Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)
Theo bất đẳng thức Cô-Si cho 4 số ta được
\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)
Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).
Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\)
b. Ta viết phương trình dưới dạng sau đây \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)
Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.
\(\Rightarrow2x\left(x-4\right)-x\left(x-2\right)=8x+8\)
\(\Leftrightarrow2x^2-8x-x^2+2x=8x+8\)
\(\Leftrightarrow x^2-14x-8=0\)
\(\Delta'=\left(-7\right)^2-1.\left(-8\right)=57\)
\(\sqrt{\Delta}=\sqrt{57}\)\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt
\(x_1=\frac{7+\sqrt{57}}{1}=7+\sqrt{57}\) \(x_2=\frac{7-\sqrt{57}}{1}=7-\sqrt{57}\)
\(x\left(3+x\right)\left(x^2+6\right)=4\left(x^2-4x+4\right)\)
\(3x^3+18x+x^4+6x^2=4x^2-16x+16\)
\(3x^3+18x+x^4+6x^2-4x^2+16x-16=0\)
\(3x^2+34x+x^4+2x^2-16=0\)
=> vô nghiệm
x^4*4x^3*2+6x^2*2^2+4x*2^3+2^4+x^4+4x^3*8+6x^2*8^2+4x*8^3+8^4=272
2x^4+40x^3+408x^2+2080x+4112=272
Đến đây là bt ra x = -4
x = -4 nha