Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(DK:\hept{\begin{cases}x^3+x^2-1\ge0\\x^3+x^2+2\ge0\end{cases}}\)
Dat
\(\hept{\begin{cases}\sqrt{x^3+x^2-1}=a\\\sqrt{x^3+x^2+2}=b\end{cases}\left(a,b\ge0\right)}\)
Ta lap HPT
\(\hept{\begin{cases}a+b=3\\a^2-b^2=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=3\\-\left(a+b\right)\left(a-b\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=3\\b-a=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=3-b\\b=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^3+x^2-1}=1\\\sqrt{x^3+x^2+2}=2\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(1\right)\\x^2-2x-2=0\left(2\right)\end{cases}}\)
Xet PT(2) ta co:
\(\Delta^`=\left(-1\right)^2-1.\left(-2\right)=3\)
\(\Rightarrow\hept{\begin{cases}x_1=1+\sqrt{3}\\x_2=-1-\sqrt{3}\end{cases}}\)
Thay \(x_1;x_2\)vao thay khong thoa man
Vay nghiem cua PT la \(x=1\)
Cách cua bn Mai Link rất hay. Các bn góp ý xem mk làm thế này có được ko nha
Đặt \(\hept{\begin{cases}\sqrt{x^3+x^2+2}=a\\\sqrt{x^3+x^2-1}=b\end{cases}}\)
theo bài ra ta có
a+b= 3 (1) => (a-b)(a+b)=3(a-b)
<=>a2-b2=3(a-b)
<=> 3=3(a-b) <=> a-b=1 (2)
Từ (1),(2) => a=2,b=1
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^3+x^2+2}=2\\\sqrt{x^3+x^2-1}=1\end{cases}}\Leftrightarrow x^3+x^2-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=1\)(do x2+2x+2>0)
Vậy ......
1/ \(x^3-x^2-x=\frac{1}{3}\Leftrightarrow3x^3-3x^2-3x=1\Leftrightarrow x^3+3x^2+3x+1=4x^3\)
\(\Leftrightarrow\left(x+1\right)^3=\left(\sqrt[3]{4}x\right)^3\Leftrightarrow x+1=\sqrt[3]{4}x\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
2/ ĐKXĐ \(x\ge1\)
\(3+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\Leftrightarrow3=\sqrt{\left(\sqrt{x-1}-1\right)^2}\Leftrightarrow\left|\sqrt{x-1}-1\right|=3\)
Tới đây xét trường hợp rồi giải :)
Đặt:
\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)
Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:
\(b-a+\sqrt[3]{a^3-b^3+8}=2\)
\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)
\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)
\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)
\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
\(x^3+\left(x+1\right)\sqrt{x+1}+2\sqrt{2}=\left(x+\sqrt{x+1}+\sqrt{2}\right)^3\) ( 1 )
\(ĐKXĐ:x\ge-1\)
Đặt: \(y=\sqrt{x+1};z=\sqrt{2}\)khi đó ( 1 ) có dạng \(x^3+y^3+z^3=\left(x+y+z\right)^3\)( 2 )
Chứng minh được ( 2 ) \(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)
+ \(x+y=0\Leftrightarrow x+\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=-x\Rightarrow x=\frac{1-\sqrt{5}}{2}\)( thoản mãn )
+ \(x+z=0\Leftrightarrow x+\sqrt{2}=0\Leftrightarrow x=-\sqrt{2}\)( không thỏa mãn )
+ \(y+z=0\Leftrightarrow\sqrt{x+1}+\sqrt{2}=0\)( vô nghiệm )
Vậy pt có nghiêm duy nhất là : \(\frac{1-\sqrt{5}}{2}\)
Nghiệm đẹp, liên hợp thôi:)
ĐK...
PT \(\Leftrightarrow\sqrt[3]{x-2}-1+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt[3]{x-2}^2+\sqrt[3]{x-2}+1}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt[3]{x-2}^2+\sqrt[3]{x-2}+1}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
Cái ngoặc to hiển nhiên vô nghiệm
=> x = 3
P/s: Lúc liên hợp em tính sai chỗ nào thì anh tự sửa:) lười check lại lắm
\(\sqrt[3]{2+x}+\sqrt[3]{2-x}=1\)
\(\Leftrightarrow2-x=\left(1-\sqrt[3]{2+x}\right)^3\)
\(\Leftrightarrow2-x=1-2-x-3\sqrt[3]{2+x}.\left(1-\sqrt[3]{2+x}\right)\)
\(\Leftrightarrow-1=\sqrt[3]{2+x}.\sqrt[3]{2-x}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=1\)
\(\Leftrightarrow x^2=5\Leftrightarrow x=\pm\sqrt{5}\)
Vậy ...
Điều kiện \(x\ge-1\)
pt đã cho \(\Leftrightarrow x^2+x=3\left(\sqrt{x^3+1}-1\right)\) (1)
Vì \(\sqrt{x^3+1}+1\ne0\) với mọi \(x\ge-1\) nên ta có thể viết lại pt (1) như sau:
\(\left(1\right)\Leftrightarrow x^2+x=3.\dfrac{\left(\sqrt{x^3+1}-1\right)\left(\sqrt{x^3+1}+1\right)}{\sqrt{x^3+1}+1}\)
\(\Leftrightarrow x^2+x=3.\dfrac{\left(\sqrt{x^3+1}\right)^2-1}{\sqrt{x^3+1}+1}\)
\(\Leftrightarrow x^2+x=3.\dfrac{x^3}{\sqrt{x^3+1}+1}\)
\(\Leftrightarrow x\left(x+1-\dfrac{x^2}{\sqrt{x^3+1}+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x+1-\dfrac{x^2}{\sqrt{x^3+1}+1}=0\left(\cdot\right)\end{matrix}\right.\)
Xin lỗi bạn nhưng mình chỉ làm được đến đó thôi. Tìm được \(x=0\) rồi. Còn \(\left(\cdot\right)\) thì mình chưa giải được.
Chỗ kia mình nhầm xíu. \(\left(\cdot\right)\) phải là \(x+1=\dfrac{3x^2}{\sqrt{x^3+1}+1}\)