K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-2\right)\left(4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{5}{4}\end{matrix}\right.\\ \Rightarrow S=\left\{-\frac{5}{4};2\right\}\)

1 tháng 4 2020

x-2=0 hoặc 4x+5=0

x=2 hoặc x=\(\frac{-5}{4}\)

X-\(\frac{3}{2}\)+X-\(\frac{5}{6}\)=\(-\frac{1}{3}\)

2X=\(-\frac{1}{3}\)+\(\frac{3}{2}+\frac{5}{6}\)

➜ 2X=2

➜X = 1

Vậy....................

2 tháng 4 2020

Lộn đề rồi

NV
28 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)

Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(6\left(a^2-2\right)+7a-36=0\)

\(\Leftrightarrow6a^2+7a-48=0\)

Nghiệm xấu

Tôi nghĩ là như này :)) Sai thì chịu nhá :((

Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)

Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)

Nên VP pt (1) cũng phải lớn hơn bằng 0

Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)

Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)

Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)

\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )

Vậy \(x=-2\) thỏa mãn pt.

6 tháng 2 2020
\(\left|x+1\right|\) - + + + +
3\(\left|x-1\right|\) - - + + +
\(\left|x\right|\) - - - + +
\(2\left|x-2\right|\) - - - - +
PT 2x-4=5x-2 2x-4=5x-2 -4x+2=2x-2 -4x+2=-2x+6

-1 0 1 2

1) x=-2/3>-1( loại)

2)

10 tháng 3 2019

\(\left(x-1\right)^3+\left(2x-1\right)^3=\left(3x-2\right)^3\)

\(\left(3x-2\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(2x-1\right)+\left(2x-1\right)^2-\left(3x-2\right)^2\right]=0\)

\(\left(3x-2\right).\left(-3\right)\left(2x^2-3x+1\right)=0\)

\(\left(3x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy ....

18 tháng 3 2018

a)

\(4x^2+4x+5>0\)

\(\Leftrightarrow4x^2+4x+4+1>0\)

\(\Leftrightarrow\left(2x+2\right)^2+1>0\) ( luôn đúng)

b)

\(x^2-x+1>0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}>0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ( luôn đúng)

19 tháng 3 2018

câu a sai nha Nhã Doanh cẩn thận tí đi

5 tháng 7 2016

5x^3+4x=x(5x^2+4)=0=> x=0 vi 5x^2+4 khac 0

2) tuong tu x=0

3) tt x=0

cu phan h la ra

17 tháng 2 2020

\(-5x+3x^2=0\\ \Leftrightarrow-x\left(5-3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\5-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(\left\{0;\frac{5}{3}\right\}\)

Ta có: \(-5x+3x^2=0\)

\(\Leftrightarrow3x^2-5x=0\)

\(\Leftrightarrow x\left(3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)