K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2022

a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)

=a+b+c

e: \(=\dfrac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{a\left(b^2-c^2\right)-b\left(b^2-c^2\right)}\)

\(=\dfrac{ab\left(a-b\right)+c\left(b-a\right)\left(b+a\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\dfrac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\dfrac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}=\dfrac{a-c}{b+c}\)

1 tháng 9 2017

Ta có: 

\(\frac{x}{\left(a-b\right)\left(a-c\right)}+\frac{x}{\left(b-a\right)\left(b-c\right)}+\frac{x}{\left(c-a\right)\left(c-b\right)}=2\)

\(\Leftrightarrow x\left(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\right)=2\)

\(\Leftrightarrow0x=2\)

Vậy PT vô nghiệm

1 tháng 9 2017

không hổ danh là anh ali ( bài này tui bó tay T_T )

12 tháng 1 2017

tích cho tớ nha cậu, mơn nhìu ạk

12 tháng 1 2017

Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!

mk đang cần gấp....<3<3<3<3<3<3

9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko

6 tháng 6 2020

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?