K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

\(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0;ĐK:x\ge4\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}-\sqrt{x+4}\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)

\(\leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)

\(\leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)

\(\leftrightarrow14\sqrt{x^2+9x}=-14x-45\)

\(\leftrightarrow\hept{\begin{cases}196.x^2+9x=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}\leftrightarrow x=\frac{225}{56}}\) loại

-> PT vô nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

Lời giải:

Với mọi $x$ thuộc ĐKXĐ, ta luôn có:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)

Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)

Do đó pt vô nghiệm.

30 tháng 7 2018

nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?

19 tháng 11 2017

Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\)      (*)

\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\)     \(\left(1\right)\)

Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)

\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)

\(\Rightarrow1-x⋮d\)

\(\Rightarrow1-x+x+1⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ

\(\Rightarrow d=\pm1\)

\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau

Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương

Giả sử: + \(x^2+1=m^2\)

\(\Rightarrow m^2-x^2=1\)

\(\Rightarrow x=0\)(bạn tự tính)

    +\(x+1=n^2\)

\(\Rightarrow x=0\)(bạn tự tính)

Thay x=0 vào phương trình (*)=> y=-1;0

Vậy.......

11 tháng 10 2017

Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)

Dấu \(=\)xảy ra khi \(AB\ge0\)

11 tháng 10 2017

dat \(\sqrt{x-1}\) = t

ta có: \(\sqrt{x+3+4t}\)\(\sqrt{x+8-6t}\)= 5

     x + 3 + 4t + x + 8 - 6t = 25

   2x - 2t = 14 ( chia cả 2 vế cho 2)

   x - t = 7

   t = x - 7

  thay t = \(\sqrt{x}-1\)vào ta được:

 x - 7 = \(\sqrt{x-1}\)

( x - 7 )2 = x - 1

x2 -14x + 49 = x - 1

x- 15x + 50 = 0

​k biết đúng hay k

11 tháng 10 2017

sai đề

18 tháng 11 2022

a: ĐKXĐ: x>=0

b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)

\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)

\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)

\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)

=>\(x\in\left\{0;1.2996\right\}\)

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2