K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2019

ĐKXĐ: \(x\ne\left\{-10;-8;-3;-1\right\}\)

\(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}=\frac{9}{52}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{9}{52}\)

\(\Leftrightarrow\frac{9}{\left(x+1\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=52\)

\(\Leftrightarrow x^2+11x-42=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-14\end{matrix}\right.\)

31 tháng 1 2020

Câu c : \(x^4-3x^3+2x^2-9x+9=0\)
<=>\(x^4-x^3-2x^3+2x^2-9x+9=0\)
<=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)-9\left(x-1\right)=0\)
<=>\(\left(x-1\right)\left(x^3-2x^2-9\right)=0\)
<=> \(x-1=0\) hoặc \(x^3-2x^2-9=0\)
Nếu x-1=0 <=> x=1
Nếu \(x^3-2x^2-9=0\)
<=> \(x^3-3x^2+x^2-9=0\)
<=>\(x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)=0\)
<=>\(\left(x-3\right)\left(x^2+x+3\right)=0\)
\(x^2+x+3=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\) >0 nên x-3=0 <=> x=3
Vậy \(S=\left\{1;3\right\}\)

31 tháng 1 2020

Câu b : \(x^2+\left(\frac{x}{x+1}\right)^2=\frac{5}{4}\)

<=> \(4x^2\left(x^2+2x+2\right)=5\left(x^2+2x+1\right)\)
<=> \(4x^4+8x^3+8x^2=5x^2+10x+5\)
<=>\(4x^4+8x^3+3x^2-10x-5=0\)
<=>\(4x^4-4x^3+12x^3-12x^2+15x^2-15x+5x-5=0\)
<=>\(\left(x-1\right)\left(4x^3+12x^2+15x+5\right)=0\)
<=>\(\left(x-1\right)\left(2x+1\right)\left(2x^2+5x+5\right)=0\)
<=>x=1 hoặc \(x=\frac{-1}{2}\)
Phương trình \(2x^2+5x+5=0\) Vô nghiệm

31 tháng 1 2020

a) \(ĐKXĐ:x\ne-1;x\ne-3;x\ne-8;x\ne-10\)

 \(\frac{2}{x^2+4x+3}+\frac{5}{x^2+11x+24}+\frac{2}{x^2+18x+8x}=\frac{9}{52}\)

\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+10\right)\left(x+8\right)}-\frac{9}{52}=0\)

\(\Leftrightarrow\frac{104\left(x+10\right)\left(x+8\right)+260\left(x+1\right)\left(x+10\right)+104\left(x+1\right)\left(x+3\right)-9\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

Đoạn này cậu tự phân tích tử rồi rút gọn nhé :D Vì hơi dài nên viết ra đây sẽ rối, k đẹp mắt cho lắm :>

\(\Leftrightarrow\frac{-927x^2+1782x+9072-9x^4-198x^3}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left(x^4+22x^3+103x^2-198x-1008\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left(x^4-3x^3+25x^3-75x^{^2}+178x^2-534x+336x-1008\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left[x^3\left(x-3\right)+25x^2\left(x-3\right)+178x\left(x-3\right)+336\left(x-3\right)\right]}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left(x-3\right)\left(x^3+25x^2+178x+336\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left(x-3\right)\left(x^3+14x^2+11x^2+154x+24x+336\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left(x-3\right)\left[x^2\left(x+14\right)+11x\left(x+14\right)+24\left(x+14\right)\right]}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left(x-3\right)\left(x+14\right)\left(x^2+11x+24\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)=0}\)

\(\Leftrightarrow\frac{-9\left(x+14\right)\left(x-3\right)\left(x+3\right)\left(x+8\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)

\(\Leftrightarrow\frac{-9\left(x+14\right)\left(x-3\right)}{52\left(x+1\right)\left(x+10\right)}=0\)

\(\Leftrightarrow-9x^2-99x+378=0\)

\(\Leftrightarrow x^2+11x-42=0\)

\(\Leftrightarrow\left(x+14\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+14=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-14\\x=3\end{cases}}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-14;3\right\}\)

b) \(ĐKXĐ:x\ne-1\)

 \(x^2+\left(\frac{x}{x+1}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow x^2+\frac{x^2}{\left(x+1\right)^2}-\frac{5}{4}=0\)

\(\Leftrightarrow\frac{4x^2\left(x^2+2x+1\right)+4x^2-5\left(x^2+2x+1\right)}{\left(x+1\right)^2}=0\)

\(\Leftrightarrow4x^4+8x^3+4x^2+4x^2-5x^2-10x-5=0\)

\(\Leftrightarrow4x^2+8x^3+3x^2-10x-5=0\)

\(\Leftrightarrow4x^4+2x^3+6x^3+3x^2-10x-5=0\)

\(\Leftrightarrow2x^3\left(2x+1\right)+3x^2\left(2x+1\right)-5\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x^3+3x^2-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x^3-2x^2+5x^2-5x+5x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left[2x^2\left(x-1\right)+5x\left(x-1\right)+5\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(2x^2+5x+5\right)=0\)

\(\Leftrightarrow2x+1=0\)                                 

hoặc \(x-1=0\)                                    

hoặc \(2x^2+5x+5=0\)                   

\(\Leftrightarrow\) \(x=-\frac{1}{2}\left(tm\right)\)

hoặc \(x=1\left(tm\right)\)

hoặc \(\left(x+\frac{5}{4}\right)^2+\frac{55}{16}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2};1\right\}\)

c) \(x^4-3x^3+2x^2-9x+9=0\)

\(\Leftrightarrow x^4-x^3-2x^3+2x^2-9x+9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-2x^2\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-3x^2\right)+\left(x^2-9\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+x+3\right)=0\)

\(\Leftrightarrow\)\(x-1=0\)

hoặc \(x-3=0\)

hoặc \(x^2+x+3=0\)

\(\Leftrightarrow\)\(x=1\left(tm\right)\)

hoặc \(x=3\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{1;3\right\}\)

3 tháng 2 2020

\(ĐKXĐ:x\ne-1;x\ne-3;x\ne-8;x\ne-10\)

\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\frac{\left(x+3\right)-\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+8\right)-\left(x+3\right)}{\left(x+3\right)\left(x+8\right)}+\frac{\left(x+10\right)-\left(x+8\right)}{\left(x+8\right)\left(x+10\right)}\)

\(=\frac{9}{52}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}=\frac{9}{52}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{9}{52}\)

\(\Leftrightarrow\frac{9}{\left(x+1\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=52\)

\(\Leftrightarrow x^2+11x+10=52\)

\(\Leftrightarrow x^2+11x-42=0\)

\(\Delta=11^2+4.42=289,\sqrt{289}=17\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+17}{2}=3\\x=\frac{-11-17}{2}=-14\end{cases}}\)

Vậy pt có 2 nghiệm là 3 và -14

13 tháng 2 2020

\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{3}{54}\)

\(\Rightarrow\left(x+4\right)\left(x+7\right)=54\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

Ta có \(\Delta=11^2+4.26=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+15}{2}=2\\x=\frac{-11-15}{2}=-13\end{cases}}\)

Vậy tập nghiệm S =  {2;-13}

22 tháng 2 2020

ai giúp mình câu (a) với ạ

NV
22 tháng 2 2020

ĐKXĐ: \(x\ne\pm\frac{3}{2}\)

\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)

1 tháng 3 2020

\(ĐKXĐ:x\ne-3;x\ne2;x\ne-1;x\ne\frac{1}{2}\)

Xét\(VT=\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}\)

\(=\frac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(=\frac{5x+5-2x+4}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}\)

\(=\frac{3x+9}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}\)

\(pt\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{4x-2}\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=4x-2\)

\(\Leftrightarrow x^2-x-2=4x-2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)(tm)

Vậy tập nghiệm của phương trình là {0;5}

1 tháng 3 2020

ĐKXĐ: \(x\ne-3,2,-1\)

\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=\frac{3}{4x-2}\)

\(\Leftrightarrow\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{3}{2\left(x-2\right)}\)

\(\Leftrightarrow10\left(x+1\right)\left(2x-1\right)-4\left(x-2\right)\left(2x-1\right)=3\left(x-2\right)\left(x+3\right)\left(x+1\right)\)

\(\Leftrightarrow12x^2+30x-18=3x^2+6x^2-15x-18\)

\(\Leftrightarrow12x^2+30x=3x^3+6x^2-15\)

\(\Leftrightarrow12x^2+30x-3x^3-6x^2+15x=0\)

\(\Leftrightarrow6x^2+45x-3x^2=0\)

\(\Leftrightarrow3x\left(2x+15-x^2\right)=0\)

\(\Leftrightarrow-x\left(x^2-2x-15\right)=0\)

\(\Leftrightarrow-x\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}-x=0\\x-5=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x=5\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)

Vậy: tập nghiệm của phương trình là: S = {0, 5}

1 tháng 4 2020
https://i.imgur.com/tcdqPPM.jpg
1 tháng 4 2020

f, \(\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\)

\(\Leftrightarrow\) \(\frac{18\left(12x+1\right)}{18\left(11x-4\right)}+\frac{2\left(10x-4\right)\left(11x-4\right)}{18\left(11x-4\right)}=\frac{\left(20x+17\right)\left(11x-4\right)}{18\left(11x-4\right)}\)

\(\Leftrightarrow\) 18(12x + 1) + 2(10x - 4)(11x - 4) = (20x + 17)(11x - 4)

\(\Leftrightarrow\) 216x + 18 + 220x2 − 168x + 32 = 220x2 + 107x − 68

\(\Leftrightarrow\) 216x + 18 + 220x2 − 168x + 32 - 220x2 - 107x + 68 = 0

\(\Leftrightarrow\) −59x + 118 = 0

\(\Leftrightarrow\) -59x = -118

\(\Leftrightarrow\) x = 2

Vậy S = {2}

Chúc bạn học tốt!

a) ĐKXĐ: x≠0

Ta có: \(\frac{9}{x}+2=-6\)

\(\frac{9}{x}+2+6=0\)

\(\frac{9}{x}+8=0\)

\(\frac{9}{x}+\frac{8x}{x}=0\)

⇔9+8x=0

⇔8x=-9

hay \(x=-\frac{9}{8}\)

Vậy: \(x=-\frac{9}{8}\)

b) ĐKXĐ: x≠0;x≠-1;x≠-3

Ta có: \(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)

\(\frac{7}{x+1}+\frac{-18x}{x\left(x+1\right)\left(x+3\right)}-\frac{-4}{x+3}=0\)

\(\frac{7x\left(x+3\right)}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}+\frac{-18x}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}-\frac{-4x\left(x+1\right)}{\left(x+3\right)\cdot x\cdot\left(x+1\right)}=0\)

\(7x^2+21x-18x+4x\left(x+1\right)=0\)

\(\Leftrightarrow7x^2+21x-18x+4x^2+4x=0\)

\(11x^2+7x=0\)

\(\Leftrightarrow x\left(11x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\11x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\11x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\frac{-7}{11}\end{matrix}\right.\)

Vậy: \(x=\frac{-7}{11}\)

c) ĐKXĐ: x≠1; x≠-3

Ta có: \(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2-2x+3}\)

\(\frac{3x-1}{x-1}-1-\frac{2x+5}{x+3}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\left(3x-1\right)\left(x+3\right)-\left(x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-4=0\)

\(\Leftrightarrow3x^2+9x-x-3-\left(x^2+3x-x-3\right)-\left(2x^2-2x+5x-5\right)-4=0\)

\(\Leftrightarrow3x^2+8x-3-\left(x^2+2x-3\right)-\left(2x^2+3x-5\right)-4=0\)

\(\Leftrightarrow3x^2+8x-3-x^2-2x+3-2x^2-3x+5-4=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=\frac{-1}{3}\)

Vậy: \(x=\frac{-1}{3}\)