K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(\sqrt{\left(x-4\right)^2}=x+2\)

\(\left[{}\begin{matrix}x-4=x+2\\x-4=-x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-4-x-2=0\\x-4+x+2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}-6=0\left(vonghiem\right)\\2x-2=0\end{matrix}\right.\Rightarrow x=1\left(tm\right)\)

24 tháng 7 2017

=>\(\sqrt{\left(x+3\right)^2}\)\(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x

=> x + 3 + x + 4 + x + 5 = 9x

=> - 6x = - 12

=> x=2

25 tháng 7 2017

Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a ) 

15 tháng 5 2018

Txđ: \(x\in[3;5]\)

Áp dụng BĐT : \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)Với \(a,b\ge0\)(Chứng minh cái này dễ thôi, bạn bình phương 2 vế là ra nhé)

Ta có: \(\sqrt{5-x}+\sqrt{x-3}\le\sqrt{2(5-x+x-3)}\)\(=2\)

Mặt khác: 

\(\frac{2x^2}{8x-16}=\frac{x^2}{4\left(x-2\right)}=\frac{[\left(x-2\right)+2]^2}{4\left(x-2\right)}=\frac{\left(x-2\right)^2+4\left(x-2\right)+4}{4\left(x-2\right)}=\frac{x-2}{4}+\frac{1}{x-2}+1\)

\(\ge2\sqrt{\frac{x-2}{4}.\frac{1}{x-2}}+1=2\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}5-x=x-3\\\frac{x-2}{4}=\frac{1}{x-2}\end{cases}}\)

=> \(x=4\)(Thỏa mãn Đ/K)

25 tháng 8 2017

\(\left(\sqrt{2x+5}-\left(x+1\right)\right)^2+\left(\sqrt{3\left(x+1\right)}-\sqrt{x+7}\right)^2=0.\\ \)
Đến đây chắc biết phải làm gì =))
 

29 tháng 10 2020

a) \(\sqrt{x^2-6x+9}=3\)

⇔ \(\sqrt{\left(x-3\right)^2}=3\)

⇔ \(\left|x-3\right|=3\)

⇔ \(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)

b) \(\sqrt{x^2-8x+16}=x+2\)

⇔ \(\sqrt{\left(x-4\right)^2}=x+2\)

⇔ \(\left|x-4\right|=x+2\)

⇔ \(\orbr{\begin{cases}x-4=x+2\left(x\ge4\right)\\4-x=x+2\left(x< 4\right)\end{cases}\Leftrightarrow}x=1\)

c) \(\sqrt{x^2+6x+9}=3x-6\)

⇔ \(\sqrt{\left(x+3\right)^2}=3x-6\)

⇔ \(\left|x-3\right|=3x-6\)

⇔ \(\orbr{\begin{cases}x-3=3x-6\left(x\ge3\right)\\3-x=3x-6\left(x< 3\right)\end{cases}}\Leftrightarrow x=\frac{9}{4}\)

d) \(\sqrt{x^2-4x+4}-2x+5=0\)

⇔ \(\sqrt{\left(x-2\right)^2}-2x+5=0\)

⇔ \(\left|x-2\right|-2x+5=0\)

⇔ \(\orbr{\begin{cases}x-2-2x+5=0\left(x\ge2\right)\\2-x-2x+5=0\left(x< 2\right)\end{cases}}\Leftrightarrow x=3\)

14 tháng 8 2017

đặt \(\sqrt{7-x}=a\) , \(\sqrt{x-1}=b\)

rồi thay vào và ptđttnt

14 tháng 8 2017

ĐK: \(1\le x\le7\)

\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

\(x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{-x^2+8x-7}=0\)

Đặt \(\sqrt{x-1}=a;\sqrt{7-x}=b\left(a,b\ge0\right)\)

\(pt\Rightarrow a^2+2b-2a-ab=0\Leftrightarrow\left(a^2-ab\right)-\left(2a-2b\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a-2=0\\a=b\end{cases}}\)

TH1: \(a-2=0\Rightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(tm\right)\)

TH2: \(a=b\Rightarrow\sqrt{x-1}=\sqrt{7-x}\Rightarrow x=4\left(tm\right)\)

Vậy pt có 2 nghiệm x = 4 hoặc x = 5.

19 tháng 9 2017

Cc mày