K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Ta có : (x + 1)(x + 2)(x + 3)(x + 4) = 3x2

=> [(x + 1)(x + 4)][(x + 2)(x + 3)] = 3x2

=> (x2 + 5x + 4) (x2 + 5x + 6) = 3x2

Đặt x2 + 5x + 5 = a 

Thay vào biểu thức ta có : (a - 1)(a + 1) = 3x2

<=> a2 - 1 = 3a2

<=> (x+ 5x + 5)2 = 3x2

<=> x4 + 10x2 + 15 = 3x2

=> x+ 10x2 + 15 - 3x2 = 0

<=> x4 + 7x2 + 15 = 0

<=> (x2 + 3,5)2 + 2,75 = 0

=> sai đề 

ĐK:\(x\ge1\)

Bình phương 2 vế ta được

\(2\left(x^2+2x+3\right)^2=25\left(x^3+3x^2+3x+2\right)\)

\(\Leftrightarrow2\left(x^4+4x^2+9+4x^3+12x+6x^2\right)=25\left(x^3+3x^2+3x+2\right)\)

\(\Leftrightarrow2x^4-17x^3-55x^2-51x-32=0\)

\(\Leftrightarrow x^2\left(2x^2-17x-55\right)-51x-32=0\)

\(\Delta=256x^2-2176x-4439\)

    \(=\left(16x-68\right)^2-9063\)

Để pt có nghiệm thì \(\Delta\)là số chính phương 

\(\Rightarrow\left(16x-68\right)^2-9063=k^2\left(k\in N\right)\)

\(\Leftrightarrow\left(16x-68-k\right)\left(16x-68+k\right)=9063=1007.9=1.9063\)

Mặt khác k,x \(\ge\)0 nên

\(16x-68-k< 16x-68+k\)

Từ đó có 2 TH

*\(\hept{\begin{cases}16x-68-k=1\\16x-68+k=9063\end{cases}\Leftrightarrow}x=\frac{575}{2}\left(tm\right)\)

*\(\hept{\begin{cases}16x-68-k=9\\16x-68+k=1007\end{cases}\Leftrightarrow}x=36\left(tm\right)\)

Vậy.........................

17 tháng 8 2019

ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ bài này hok phải phương trình nghiệm nguyên nên em nghĩ chắc gì \(\Delta=k^2?!?\) 

Em thì dạng này cứ liên hợp làm tới thôi:v   Nhưng ko chắc:v

Nhận xét x = -2 không phải là nghiệm, xét x khác -2

ĐK: \(x>-2\)

Bớt 10x + 20= 5(2x + 4) ở cả hai vế

PT \(\Leftrightarrow2x^2-6x-14=5\left(\sqrt{x^3+3x^2+3x+2}-\left(2x+4\right)\right)\)

\(\Leftrightarrow2\left(x^2-3x-7\right)=5.\frac{x^3-x^2-13x-14}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)

\(\Leftrightarrow2\left(x^2-3x-7\right)=\frac{5\left(x+2\right)\left(x^2-3x-7\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)

\(\Leftrightarrow\left(x^2-3x-7\right)\left(2-\frac{5\left(x+2\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\right)=0\)

*Giải cái ngoặc to \(\Leftrightarrow2\sqrt{x^3+3x^2+3x+2}-\left(x+2\right)=0\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x^2+x+1\right)}-\left(x+2\right)=0\)

\(\Leftrightarrow\sqrt{x+2}\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)

\(\Leftrightarrow\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)(vì x > -2 nên \(\sqrt{x+2}>0\))

Ta có: \(VT=2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-1\ge2\sqrt{\frac{3}{4}}-1>0\)

Do đó cái ngoặc to vô nghiệm.

Còn lại cái ngoặc nhỏ và bí:)

Chắc đúng rồi nhỉ:))

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

6 tháng 2 2020

\(\frac{3x-1}{2}-\frac{2-6x}{5}=\frac{1}{2}+\left(3x-1\right)\)

\(\Leftrightarrow\frac{3x-1}{2}+\frac{2\left(3x-1\right)}{5}-\left(3x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{2}+\frac{2}{5}-1\right)=\frac{1}{2}\)

\(\Leftrightarrow\frac{-1}{10}\left(3x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow3x-1=-5\)

\(\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy nghiệm duy nhất của phương trình là\(x=\frac{-4}{3}\)

\(\left(x^2+2x+1\right)-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5x-5}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5\left(x+1\right)}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+6-5\right)}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+1\right)}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}-\frac{\left(x+1\right)\left(6x+1\right)}{6}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-\frac{1}{3}-\frac{6x+1}{6}\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy nghiệm duy nhất của phương trình là\(x=-1\)

22 tháng 4 2017

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 3 2021

a)(2x+1)(3x-2)=(5x-8)(2x+1)

⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0

⇔(2x+1)(3x-2-5x+8)=0

⇔(2x+1)(-2x+6)=0

⇔2x+1=0 hoặc -2x+6=0

1.2x+1=0⇔2x=-1⇔x=-1/2

2.-2x+6=0⇔-2x=-6⇔x=3

phương trình có 2 nghiệm x=-1/2 và x=3

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

12 tháng 4 2019

x=2 nhé

22 tháng 4 2017

Giải bài 25 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 25 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

30 tháng 1 2018

a) \(2x^3 + 6x^2 = x^2 +3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\)

\(\Leftrightarrow\left(x+3\right).x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

S = \(\left\{-3;0;\dfrac{1}{2}\right\}\)

b) \((3x-1) (x^2 +2 ) = (3x-1) (7x - 10)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)

S = \(\left\{\dfrac{1}{3};3;4\right\}\)