K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

\(4x^3-16x=0\)

\(\Leftrightarrow4x\cdot\left(x^2-4\right)=0\)

\(\Leftrightarrow4x\cdot\left(x-2\right)\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

13 tháng 7 2021

\(\Leftrightarrow\)\(4x(x^{2}-4)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} 4x=0\\ x^{2}-4=0 \end{array} \right.\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=0\\ x=2,x=-2 \end{array} \right.\)

15 tháng 2 2020

\(a.\left(3-x\right)^2-12+4x=0\)

\(\Rightarrow\left(3-x\right)^2-4.\left(3-x\right)=0\)

\(\Rightarrow\left(3-x\right)\left(-x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\-x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

\(b.\left(4x-5\right)^2-2.\left(16x^2-25\right)=0\)

\(\Rightarrow\left(4x-5\right)^2-2.\left(4x+5\right).\left(4x-5\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(4x-5-8x-10\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(-4x-15\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x-5=0\\-4x-15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}\)

15 tháng 2 2020

ths bn nh 

12 tháng 2 2018

Tham khảo bài này :

(3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy x = -1/3 hoặc x = -5

12 tháng 2 2018

\(a,x^2+10x+25-4x\left(x+5\right)=0.\)

\(\Leftrightarrow\left(x+5\right)^2-4x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(5-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\5-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

\(b,\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)

\(\Leftrightarrow\left(4x-5\right)^2-2\left(4x+5\right)\left(4x-5\right)=0\)

\(\Leftrightarrow-\left(4x-5\right)\left(4x+15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\4x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{15}{4}\end{cases}}}\)

3 tháng 4 2020

a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )  

<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0

<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0

<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0

<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)

Vậy x = { \(\frac{-1}{3};-5\)

b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0 

<=> ( x + 5 )2 -4.x . (x + 5 ) = 0

<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0

<=> ( x + 5 ) . ( 5 - 3.x )  = 0

<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{3};-5\right\}\)

c) (4.x - 5 )- 2. ( 16.x2 -25 ) = 0 

<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0

<=> (  4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0

<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0

<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0

<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)

d) ( 4.x + 3 )2 = 4. ( x- 2.x + 1 ) 

<=> 16.x+ 24.x + 9 - 4.x + 8.x - 4 = 0

<=> 12.x2 + 32.x + 5 =0 

<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0 

<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)

Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

e) x2 -11.x + 28 = 0

<=> x2 -4.x  - 7.x + 28 = 0

<=> ( x - 7 ) . ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)

Vậy x = { 4 ; 7 } 

f ) 3.x.3 - 3.x2 - 6.x = 0

<=> 3.x. ( x2 -x - 2 ) = 0 

<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

        \([x=0\)                \([x=0\)

( Lưu ý :Lưu ý này không cần ghi vào vở :  Chị nối 2 ý đó làm 1 nha cj ! ) 

Vậy x = { 2 ; -1 ; 0 } 

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

a) x2 + 10x + 25 - 4x2 - 20x = 0

<=> 3x2 + 10x - 25 = 0

<=> (x + 5)(3x - 5) = 0 <=> \(\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)

Vậy S = \(\left\{-5;\frac{5}{3}\right\}\)

b. (4x - 5)2 - 2(4x - 5)(4x + 5) = 0

<=> (4x - 5)[(4x - 5) - 2(4x + 5)] = 0

<=> (4x - 5)(4x - 5 - 8x - 10) = 0

<=> (4x - 5)(-4x - 15) = 0 <=> \(\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{15}{4}\end{cases}}\)

Vậy S = \(\left\{-\frac{15}{4};\frac{5}{4}\right\}\)

1 tháng 7 2017

a) \(x^3-16x=0\)

<=> \(x\left(x^2-16\right)=0\)

<=> \(x\left(x-4\right)\left(x+4\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=-4;4\end{cases}}\)

b) \(2x^3-50x=0\)

<=> \(2x\left(x^2-25\right)=0\)

<=> \(2x\left(x-5\right)\left(x+5\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=5;-5\end{cases}}\)

c) \(x^3-4x^2-9x+36=0\)

<=> \(\left(x^3-4x^2\right)-\left(9x-36\right)=0\)

<=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)

<=> \(\left(x-4\right)\left(x^2-9\right)=0\)

<=> \(\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

<=> \(\orbr{\begin{cases}x=-3;3\\x=4\end{cases}}\)

1 tháng 7 2017

a)\(x^3-16x=0\)

   \(x\left(x^2-4^2\right)=0\)

     \(x\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

       x + 4 =0                  x = -4

b)Giống ở câu a

c)\(x^3-4x^2-9x+36=0\)

    \(x^2\left(x-4\right)+9\left(x-4\right)=0\)

    \(\left(x^2+9\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x^2+9=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\xkoTM\end{cases}}\)

    

16 tháng 2 2019

Đặt \(\hept{\begin{cases}2x+1=a\\4x+1=b\end{cases}\Rightarrow}b-a=2x\)

Khi đó: \(\left(2x+1\right)^4+\left(4x+1\right)^4=16x^4\) (1)

\(\Leftrightarrow a^4+b^4=\left(b-a\right)^4\)

\(\Leftrightarrow a^4+b^4=b^4-4b^3a+6b^2a^2-4ba^3+a^4\)

\(\Leftrightarrow-4b^3a+6a^2b^2-4ba^3=0\)

\(\Leftrightarrow-4ab\left[a^2-\frac{3}{2}ab+b^2\right]=0\)(2)

Mà \(a^2-\frac{3}{2}ab+b^2=\left(a-\frac{3}{4}b\right)^2+\frac{7}{16}b^2>0\) (vì a và b không thể đồng thời bằng 0)

Do đó: (2) \(\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x+1=0\\4x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{1}{4}\end{cases}}\)

Vậy tập nghiệm của pt (1) là: \(S=\left\{-\frac{1}{2};-\frac{1}{4}\right\}\)