Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{25x^2-10x+1}=4x+9\)
\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x+9\)
\(\Leftrightarrow\left|5x-1\right|=4x+9\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=4x+9\\5x-1=-4x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-\frac{8}{9}\end{cases}}}\)
Vậy ...
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)
Vậy ...
\(a,\sqrt{x-2\sqrt{x}-1}-\sqrt{x-1}=1.\)
\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{x-1}=1\)
\(\Rightarrow x-1-\sqrt{x-1}=1\)
\(\Rightarrow\sqrt{x-1}=x-1+1\)
\(\Rightarrow x-1=x^2\Rightarrow x^2-x+1=0\) ( vô nghiệm vì nó luôn lớn hơn 0 )
\(đkxđ\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)
\(c,\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}.\)
\(\Rightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Rightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)
\(\Rightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Rightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)
\(\Rightarrow\sqrt{2x-1}+\sqrt{2x-1}=2\)
\(\Rightarrow\sqrt{2x-1}=1\Rightarrow\sqrt{2x-1}^2=1\)
\(\Rightarrow2x-1=1\Rightarrow2x=2\Leftrightarrow x=1\)\(\left(tm\right)\)
d tương tự nha , nhân thêm 2 vế với \(\sqrt{6}\)là ra
a) Ta có pt \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\left|x-3\right|=\sqrt{3}+1...\)
b) Ta có pt \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=1\Leftrightarrow\left|x-1\right|+\left|x+2\right|=1\)
đến đây tự phá dấu trị tuyệt đối !
^_^
a) \(\sqrt{4x}=10\) (ĐKXĐ: 4x>=0 <=> x>=0)
\(\Leftrightarrow4x=100\)
\(\Leftrightarrow x=25\)
\(S=\left\{25\right\}\)
b) \(\sqrt{x^2-2x+1}=8\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=8\)
\(\Leftrightarrow x-1=8\)
\(\Leftrightarrow x=9\)
\(S=\left\{9\right\}\)
c) \(\sqrt{x^2-6x+9}=\sqrt{1-6x+9x^2}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(1-3x\right)^2}\)
\(\Leftrightarrow x-3=1-3x\) hoặc \(\Leftrightarrow x-3=-1+3x\)
\(\Leftrightarrow x+3x=1+3\) \(\Leftrightarrow x-3x=-1+3\)
\(\Leftrightarrow4x=4\) \(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=1\) \(\Leftrightarrow x=-1\)
\(S=\left\{1;-1\right\}\)
d) \(\sqrt{2x-5}=x-2\)
\(\Leftrightarrow2x-5=x^2-4x+4\)
\(\Leftrightarrow-x^2+2x+4x-5-4=0\)
\(\Leftrightarrow-x^2+6x-9=0\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
e) \(\sqrt{x^2-2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-2x+1=x+1\)
\(\Leftrightarrow x^2-2x-x+1-1=0\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{0;3\right\}\)
g) \(\sqrt{x^2-9}-\sqrt{x-3}=0\) ( ĐKXĐ: x-3>=0 <=> x>=3)
\(\Leftrightarrow\sqrt{x^2-9}=\sqrt{x-3}\)
\(\Leftrightarrow x^2-9=x-3\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=-2\) \(\Leftrightarrow x=3\)
\(S=\left\{-2;3\right\}\)
h) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-2+x-3-1=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
i) \(\sqrt{\frac{2x-3}{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow4\left(x-1\right)=2x-3\)
\(\Leftrightarrow4x-4-2x+3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(S=\left\{\frac{1}{2}\right\}\)
l) \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
\(\Leftrightarrow x+y-4\sqrt{x}+12-6\sqrt{y-1}=0\)
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\) hoặc \(\Leftrightarrow\sqrt{y-1}-3=0\)
\(\Leftrightarrow\sqrt{x}=2\) \(\Leftrightarrow\sqrt{y-1}=3\)
\(\Leftrightarrow x=4\) \(\Leftrightarrow y-1=9\)
\(\Leftrightarrow y=10\)
KẾT luận : ..............
Tới đây nhé, nếu mai chưa ai giải thì mình giải hộ cho
CHÚC BẠN HỌC TỐT!
m) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
<=> \(\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)
<=>\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
<=>\(\sqrt{x-1}+2+\sqrt{x-1}+3=5\)
<=> \(2\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}=0\) <=>x=1
Vậy \(S=\left\{1\right\}\)
n) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (*) ( đk \(x\ge\frac{1}{2}\))
<=> \(\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2\)
<=> \(x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-2x+1}=2\)
<=> 2x+\(2\sqrt{\left(x-1\right)^2=2}\)
<=> x+\(\left|x-1\right|=2\)(1)
TH1: \(\frac{1}{2}\le x\le1\)
Từ (1) => x+1-x=2
<=> 1=2(vô lý)
TH2: x>1
Từ (1)=> x+x-1=2
<=> 2x=3<=> \(x=\frac{2}{3}\)(tm pt (*))
Vậy \(S=\left\{\frac{2}{3}\right\}\)
p) \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\) (*) (đk :\(x\ge2\))
Đặt \(\left\{{}\begin{matrix}x-2=a\left(a\ge0\right)\\x+1=b\left(b\ge0\right)\end{matrix}\right.\) =>a+b=2x-1
Có \(\sqrt{a+b}+\sqrt{a}=\sqrt{b}\)
<=> \(\sqrt{a+b}=\sqrt{b}-\sqrt{a}\)
<=> \(a+b=b-2\sqrt{ab}+a\)
<=> 0=\(-2\sqrt{ab}\)
=> \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) => x=2 (vì x=-1 không thỏa mãn pt(*))
Vậy \(S=\left\{2\right\}\)
q) \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)(*) (đk : \(7\le x\le9\))
Với a,b\(\ge0\) có: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự cm nha) .Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên có:
\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{\frac{2}{2}}=2\) (1)
Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2 \(\ge2\) với mọi x (2)
Từ (1),(2) .Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))
Vậy \(S=\left\{8\right\}\)
1.
ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}+3)^2}=5\)
\(\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}+3|=5\)
Ta thấy:
\(\text{VT}=|2-\sqrt{x-1}|+|\sqrt{x-1}+3|\geq |2-\sqrt{x-1}+\sqrt{x-1}+3|=5\)
Dấu "=" xảy ra khi \((2-\sqrt{x-1})(\sqrt{x-1}+3)\geq 0\)
$\Leftrightarrow 2\geq \sqrt{x-1}$
$\Leftrightarrow 5\geq x\geq 1$
2.
ĐKXĐ: $x\geq \frac{5}{2}$
PT \(\Leftrightarrow \sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow \sqrt{(2x-5)-6\sqrt{2x-5}+9}+\sqrt{(2x-5)+2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-5}-3)^2}+\sqrt{(\sqrt{2x-5}+1)^2}=4\)
\(\Leftrightarrow |\sqrt{2x-5}-3|+|\sqrt{2x-5}+1|=4\)
Thấy rằng:
\(\text{VT}=|3-\sqrt{2x-5}|+|\sqrt{2x-5}+1|\geq |3-\sqrt{2x-5}+\sqrt{2x-5}+1|=4\)
Dấu "=" xảy ra khi $(3-\sqrt{2x-5})(\sqrt{2x-5}+1)\geq 0$
$\Leftrightarrow 3-\sqrt{2x-5}\geq 0$
$\Leftrightarrow 7\geq x\geq \frac{5}{2}$
Vậy........
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\) \(+,x\ge2\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1\ge1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|=x-2\\\left|x-1\right|=x-1\end{matrix}\right.\Rightarrow\left|x-2\right|+\left|x-1\right|=x-2+x-1=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(\text{t/m}\right)\) \(+,1\le x< 2\Rightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=x-1\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=x-1+2-x=1\left(l\right)\) \(+,x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=-\left(x-1\right)=1-x\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(\text{t/m}\right)\) \(f,\left\{{}\begin{matrix}\sqrt{x^2-9}\ge0\\\sqrt{x^2-6x+9}\ge0\end{matrix}\right.mà:\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-9}=0\\\sqrt{x^2-6x+9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\sqrt{\left(x-3\right)^2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow x=3\)\thay vào ta thấy thoa man => x=3
\(ĐK:x\ge4\)\(\sqrt{x^2+x-20}=\sqrt{x^2+5x-4x-20}=\sqrt{x\left(x+5\right)-4\left(x+5\right)}=\sqrt{\left(x-4\right)\left(x+5\right)}=\sqrt{x-4}.\sqrt{x+5}=\sqrt{x-4}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+5}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x+5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(l\right)\end{matrix}\right.\Rightarrow x=4\) \(b,ĐK:x\le2;\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\Leftrightarrow x+1+2-x+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow3+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow2\sqrt{\left(x+1\right)\left(2-x\right)}=3\Leftrightarrow\sqrt{\left(x-1\right)\left(2-x\right)}=1,5\Leftrightarrow\left(x-1\right)\left(2-x\right)=\frac{9}{4}\Leftrightarrow\left(x-1\right)\left(x-2\right)=-\frac{9}{4}\Leftrightarrow x^2-3x+2=-\frac{9}{4}\Leftrightarrow x^2-3x+\frac{9}{4}=-2\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-2\Rightarrow vonghiem\)
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a: \(\Leftrightarrow\left|x-1\right|+\left|x-3\right|=1\)
TH1: x<1
Pt sẽ là 1-x+3-x=1
=>4-2x=1
=>x=3/2(loại)
TH2: 1<=x<3
Pt sẽ là x-1+3-x=1
=>2=1(loại)
TH3: x>=3
Pt sẽ là x-1+x-3=1
=>2x=5
hay x=5/2(loại)
b: \(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=2\)
\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\)
TH1: x>=2
Pt sẽ là \(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)
=>căn x-1=1
=>x-1=1
hay x=2(nhận)
TH2: 1<=x<2
Pt sẽ là \(\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
=>2=2(luôn đúng)