K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(x-2008=X;y-2009=Y;z-2010=Z\)

\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)

\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)

\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)

\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)

\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)

9 tháng 3 2017

Ta có: y=\(\frac{2008-1003x}{2}\)

Để y nguyên dương => 2008-1003.x\(\ge\)0 => x\(\le\)2 và 2008-1003.x) phải là số chẵn => x là số chẵn

=> x={0; 2} => y=(1004; 1)

=> A=x2+y2 = 02+10042=10042

A=x2+y2 = 12+12=2

ĐS: A=2; A=10042

20 tháng 10 2018

~~~
~~~~~~
~~~~~~~~~~~~~~

22 tháng 2 2018

bạn ơi câu 1 phương trình có đúng không vậy?

22 tháng 2 2018

Câu 1 : Cho \(\left(x_0;y_0\right)\)là nghiệm nguyên dương của phương trình 1003x+2y=2008. Biểu thức A= \(x_0^2+y_0^2\)có giá trị bằng?

24 tháng 1 2016

Khó

22 tháng 9 2019

hướng dẫn thôi nhé 

Có: \(\left(\frac{16}{\sqrt{x-1996}}+\sqrt{x-1996}\right)+\left(\frac{1}{\sqrt{y-2008}}+\sqrt{y-2008}\right)\)

\(\ge2\sqrt{\frac{16}{\sqrt{x-1996}}\sqrt{x-1996}}+2\sqrt{\frac{1}{\sqrt{y-2008}}\sqrt{y-2008}}=8+2=10\)

\(\Leftrightarrow\)\(\frac{16}{\sqrt{x-1996}}+\frac{1}{\sqrt{y-2008}}\ge10-\left(\sqrt{x-1996}+\sqrt{y-2008}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{16}{\sqrt{x-1996}}=\sqrt{x-1996}\\\frac{1}{\sqrt{y-2008}}=\sqrt{y-2008}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2012\\y=2009\end{cases}}\)