K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 8 2021

\(x^2-2y^2-xy+2x-y-2=0\)

\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)

Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).

Ta có bảng giá trị: 

x+y+1-3-113
x-2y+1-1-331
x-10/3 (l)-8/3 (l)2/3 (l)4/3 (l)
y    

Vậy phương trình đã cho không có nghiệm nguyên. 

24 tháng 8 2020

x4 - 2y2 = 1 => x4 - 1 = 2y( 1 )

Dễ thấy : x lẻ \(x^4\equiv1\) ( mod 4 )

=> y2 chẵn => y chẵn

Đặt \(x=2k+1;y=2n\left(k;n\in Z\right)\). Ta có :

\(\left(4k^2+4k+1\right)^2-1=8n^2\)

\(\Leftrightarrow\left(4k^2+4k+2\right)\left(4k^2+4k\right)=8n^2\)

\(\Leftrightarrow\left(2k^2+2k+1\right)\left(k^2+k\right)=n^2\)

Với k = 0 thì \(y=0\) ( tm )

Thay y = 0 vào ( 1 ) ta được \(x=\pm1\) ( tm )

Với \(k\ge1\)

Đặt \(k^2+k=m\)

\(\Rightarrow\left(2m+1\right)m=n^2\)

=> m ; 2m + 1 là SCP

Ta lại có : \(k^2< k^2+k< \left(k+1\right)^2\) 

Vì k2 + k kẹp giữa 2 SCP liên tiếp nên k2 + k không thể là SCP

Vậy pt có các nghiệm ( x ; y ) là : ( 1 ; 0 ) ; ( - 1 ; 0 ) 

24 tháng 8 2020

Tohru ( ʚ๖ۣۜTεαм ๖ۣۜFℓαʂɦɞ )  làm vậy có dài không bạn?

\(x^4-2y^2=1\Leftrightarrow x^4=1+2y^2\)

Do \(\hept{\begin{cases}x^4\ge0\forall x\\2y^2\ge0\forall y\end{cases}}\)

Để x,y nguyên => \(\hept{\begin{cases}x^4=1\\2y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)

20 tháng 8 2016

 x2 + 2y2 + 3xy + 3x + 5y = 15

         Û (x +y +z )(x + 2y +1)

đúng không???

20 tháng 8 2016

GPT thì cần tìm x,ynữa

6 tháng 11 2019

d.Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath