K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

- Với \(x=1\Rightarrow y=1\)

- Với \(x>1\Rightarrow y>1\)

\(\Rightarrow3^x=2^y+1\)

Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)

Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm) 

\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)

\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)

\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)

\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
12 tháng 3 2017

Chào! tk mình đi bạn.Mình bị âm nè.

12 tháng 3 2017

Khỏi thanks!

\(------------------\)

Ta có:

\(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)

Cộng hai pt  \(\left(1\right);\left(2\right)\)  vế theo vế, ta thu được:

\(4\left(x+1\right)=4^z+2^{y-2}\)

\(\Leftrightarrow\)  \(x+1=4^{z-1}+2^{y-2}\)    

\(\Leftrightarrow\)  \(\left(x-1\right)+2=4^{z-1}+2^{y-2}\)  \(\left(i\right)\)

Lại có:   do  \(x,y,z\in Z^+\)  nên từ  \(\left(1\right)\) suy ra  \(2^y\ge4\)  hay  \(y\ge2\)

Khi đó, ta phải tìm các các nghiệm  \(x,y,z\)  sao cho  \(x,y,z\in Z^+\)  và  \(y\ge2\)

\(------------------\)

Mặt khác, từ phương trình  \(\left(2\right)\)  với lưu ý rằng  \(z\in Z^+\)  suy ra  \(3x+1⋮4,\) 

hay nói cách khác,  \(\left[4x-\left(x-1\right)\right]⋮4\)  tức là \(x-1⋮4\)  \(\left(3\right)\)

Do đó, từ  \(\left(i\right)\)  với chú ý   \(\left(3\right)\)  đã chứng minh ở trên suy ra  \(VP\left(i\right)\)  và   \(2\)  đồng dư theo mô đun  \(4\)

\(------------------\)

Ta xét các trường hợp sau:

\(\Omega_1:\)    Với  \(z=1\) thì  \(4^{z-1}=1\)  chia cho  \(4\)  dư  \(1\)  nên  \(2^{y-2}\)  chia cho  \(4\)  dư  \(1\)  \(\Rightarrow\)  \(y=2\)

vì nếu  \(y=3\)  thì   \(2^{y-2}=2\)  chia cho  \(4\)  dư  \(2\) và  \(y>3\)  thì    \(2^{y-2}⋮4\) 

Khi đó, từ  \(\left(1\right);\left(2\right)\)  suy ra  \(x=1\)

\(\Omega_1:\)  Với  \(z>1\)  thì  \(4^{z-1}⋮4\)  nên  ta có  \(2^{y-2}\)  chia cho  \(4\) phải dư  \(2\)  suy ra  \(y=3\)

Theo đó, dễ dàng suy ra được  \(x=5\)  dẫn đến  \(z=2\)

\(------------------\)

Vậy,  các bộ nghiệm nguyên dương thỏa mãn là  \(\left(x,y,z\right)\in\left\{\left(1,2,1\right);\left(5,3,2\right)\right\}\)

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

16 tháng 1 2022

y8 nha

16 tháng 1 2022

Kết quả là ra y8 nha bạn 

6 tháng 12 2017

1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:

Từ đây ta xét với \(x>6\)thì

\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm.

Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.

6 tháng 12 2017

2/ \(3^x+1=\left(y+1\right)^2\)

\(\Leftrightarrow3^x=y\left(y+2\right)\)

Với \(y=1\)

\(\Rightarrow x=1\)

Với \(y>1\)

Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)

Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)

Vậy \(x=1,y=1\)

đặt x2=a;y=b

<=>a3-a+6=b3-b

<=>b3-a3-(b-a)=6

<=>(b-a)(b2+ab+a2)-(b-a)=6

<=>(b-a)(b2+ab+a2-1)=6

đến đây là phương trình ước số rồi,lập bảng là đc

Với g​ía trị nào của a 0<= a<=9 thì các số dạng 4...4aa..a mỗi cái có n cs và 11...1aa...a mỗi cái có n cs a đồng thời là tích 2 số tự nhiên liên tiếp