K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn

27 tháng 10 2019

Với x, y, z nguyê:

Có: \(x^2+y^2-xy=x+y+2\)

=> \(2x^2+2y^2-2xy-2x-2y=4\)

=> \(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=6=1^2+1^2+2^2\)

=> x khác y 

G/s : x >y

=> x -1 > y - 1

Có các TH saU;

 \(\hept{\begin{cases}x-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=4\)( thỏa mãn )

\(\hept{\begin{cases}x-1=-1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=1\)( thỏa mãn)

\(\hept{\begin{cases}x-1=1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )

\(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}\Rightarrow\left(x-y\right)^2=1\)(thỏa mãn)

\(\hept{\begin{cases}x-1=2\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )

\(\hept{\begin{cases}x-1=2\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=16\)( loại )

Vậy nghiệm ( x; y) là ( 2;0), (0; -1) , (3; 2 ), và các hoán vị.

5 tháng 9 2020

Ta có:

x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)

⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1

⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)

Đặt (x2+1;x+1)=d(x2+1;x+1)=d

⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d

⟹2⋮d⟹2⋮d

Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1

⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2

Từ đây dễ dàng suy ra x=0x=0

⟹y=0;y=−1⟹y=0;y=−1

Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)