Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)
Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2
\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}
\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)
\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)
\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)
Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}-\frac{5}{x}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{5}{x}-\frac{8}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)-5\left(x-2\right)-8}{x\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+2x-5x+10-8=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
b) Bạn viết lại chứ mik k hiểu :33
1) * Xét \(x\ge-8\) thì \(x+8\ge0\)nên \(|x+8|=x+8\)
Đặt PT là A
A trở thành: x+8=4x-10
\(\Leftrightarrow x-4x=-10-8\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=\frac{-18}{-3}=6\)( thỏa ĐK vì x>-8)
* Xét \(x< -8\)thì\(x+8< 0\)nên \(|x+8|=-\left(x+8\right)=-x-8\)
A trở thành: \(-x-8=4x-10\)
\(\Leftrightarrow-x-4x=-10+8\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\frac{-5}{-2}=\frac{5}{2}\)(không thỏa Đk vì 5/2>-8)
Vậy tập nghiệm của PT đã cho là: S={6}
2) * Xét \(x\ge9\)thì\(x-9\ge0\)nên \(|x-9|=x-9\)
ĐẶT PT ĐỀ CHO LÀ B
B trở thành:\(x-9=2x+13\)
\(\Leftrightarrow x-2x=13+9\)
\(\Leftrightarrow-x=22\)
\(\Leftrightarrow x=-22\)(không thòa Đk do x<9)
*Xét \(x< 9\)thì\(x-9< 0\)nên \(|x-9|=-\left(x-9\right)=9-x\)
B trở thành:9-x=2x+13
\(\Leftrightarrow-x-2x=13-9\)
\(\Leftrightarrow-3x=4\)
\(\Leftrightarrow x=\frac{4}{-3}=\frac{-4}{3}\)(thỏa Đk vì x<9)
Vậy tập nghiệm của PT đã cho là: S={-4/3}
giúp bạn được nhiêu đó tk mk nha
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
( x - 1 )( x + 2 ) > ( x - 1 )2 + 3
<=> x2 + x - 2 > x2 - 2x + 1 + 3
<=> x2 + x - x2 + 2x > 1 + 3 + 2
<=> 3x > 6 <=> x > 2
Vậy bpt có tập nghiệm { x | x > 2 }
x( 2x - 1 ) - 8 < ( 5 - 2x )( 1 - x )
<=> 2x2 - x - 8 < 2x2 - 7x + 5
<=> 2x2 - x - 2x2 + 7x < 5 + 8
<=> 6x < 13 <=> x < 13/6
Vậy bpt có tập nghiệm { x | x < 13/6 }
\(\left(2x-5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x-5-x-2\right).\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left(3x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=7\\3x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{7;1\right\}\)
\(\left(x+1\right)^2=4.\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2=4.\left(x-1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x+2\right).\left(x+1+2x-2\right)=0\)
\(\Leftrightarrow\left(-x+3\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+3=0\\3x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=-3\\3x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;\frac{1}{3}\right\}\)
a) Ta có: \(\left(2x-5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=x+2\\2x-5=-x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\3x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
b) Ta có: \(\left(x+1\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=2x-2\\x+1=2-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\3x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)