K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

ĐKXĐ: x≥−2x≥−2

2(x2−x+6)=5√x3+82(x2−x+6)=5x3+8

⇔2(x2−x+6)=5√(x+2)(x2−2x+4)⇔2(x2−x+6)=5(x+2)(x2−2x+4)

Đặt {√x+2=a≥0√x2−2x+4=b>0{x+2=a≥0x2−2x+4=b>0

⇒2(a2+b2)=5ab⇒2(a2+b2)=5ab

⇔2a2−5ab+2b2=0⇔2a2−5ab+2b2=0

⇔(a−2b)(2a−b)=0⇔(a−2b)(2a−b)=0

⇒[a=2b2a=b⇒[a=2b2a=b ⇒[√x+2=2√x2−2x+42√x+2=√x2−2x+4⇒[x+2=2x2−2x+42x+2=x2−2x+4

⇒[x+2=4(x2−2x+4)4(x+2)=x2−2x+4⇒[x+2=4(x2−2x+4)4(x+2)=x2−2x+4

⇒...

10 tháng 8 2021

Đừng cho mình nhé ko phải do mình làm chỉ nhờ trang mạng khác để giúp cậu thôi nhé

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

NV
16 tháng 2 2020

1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)

\(t^3+2=2t-2\)

\(\Leftrightarrow t^3-2t+4=0\)

\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)

\(\Rightarrow t=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)

\(\Leftrightarrow x^2+5x-2=-8\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)

\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

28 tháng 10 2020

a, ĐKXĐ: \(-3\le x\le6\)

\(pt\Leftrightarrow3+x+6-x+2\sqrt{\left(3+x\right)\left(6-x\right)}=9\)

\(\Leftrightarrow\sqrt{\left(3+x\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

b, ĐKXĐ: \(x\ge4\)

\(pt\Leftrightarrow\sqrt{x-4+4\sqrt{x-4}+4}+x+2+\sqrt{x-4}=8\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+x+2+\sqrt{x-4}=8\)

\(\Leftrightarrow\sqrt{x-4}+2+x+2+\sqrt{x-4}=8\)

\(\Leftrightarrow2\sqrt{x-4}=4-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\4\left(x-4\right)=\left(4-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\x^2-12x+32=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

28 tháng 10 2020

e, Đặt \(y=x-1\) ta có

\(pt\Leftrightarrow\left(y+4\right)^4+\left(y-4\right)^4=1312\)

\(\Leftrightarrow2y^4+192y^2-800=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2=4\\y^2=-100\left(l\right)\end{matrix}\right.\Leftrightarrow y=\pm2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

2 tháng 10 2019

cách giải á bạn