K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà

16 tháng 4 2018

\(a)\) \(3-2x>4x+5\)

\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)

\(\Leftrightarrow\)\(6x+5< 3\)

\(\Leftrightarrow\)\(6x+5-5< 3-5\)

\(\Leftrightarrow\)\(6x< -2\)

\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)

\(\Leftrightarrow\)\(x< \frac{-1}{3}\)

Vậy \(x< \frac{-1}{3}\)

Chúc bạn học tốt ~ 

31 tháng 3 2019

c) \(\left|2x-3\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)

\(TH:2x-3=4\)

\(\Leftrightarrow2x=4+3\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\frac{7}{2}\)

\(TH:2x-3=-4\)

\(\Leftrightarrow2x=-4+3\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{7}{2};\frac{-1}{2}\right\}\)

31 tháng 3 2019

e) \(\frac{x-1}{x-3}>1\)

\(ĐKXĐ:x\ne3\)

\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)

\(\Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\)

\(\Leftrightarrow1+\frac{2}{x-3}>1\)

\(\Leftrightarrow\frac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

20 tháng 9 2020

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow-7x+3=-4x-15\)

\(\Leftrightarrow-7x+4x=-15-3\)

\(\Leftrightarrow-3x=-18\)

\(\Leftrightarrow x=6\)( tmđk )

Vậy x = 6 là nghiệm của phương trình

2) 2x + 3 < 6 - ( 3 - 4x )

<=> 2x + 3 < 6 - 3 + 4x

<=> 2x - 4x < 6 - 3 - 3

<=> -2x < 0

<=> x > 0

Vậy nghiệm của bất phương trình là x > 0

20 tháng 1 2019

\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)

Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)

\(\Leftrightarrow4x-2-6x-3=4\)

\(\Leftrightarrow-2x=9\)

\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)

Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)

\(b,ĐKXĐ:x\ne\pm1;-3\)

Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)

\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)

\(\Leftrightarrow9x^2+14x+13=0\)

\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)

\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)

Pt vô nghiệm 

\(c,ĐKXĐ:x\ne1\)

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)

Kết hợp vs ĐKXĐ được x = -1

Vậy pt có nghiệm duy nhất x = -1

20 tháng 1 2019

làm lần lượt nha(bài nào k bt bỏ qua)

\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow-2x-5=4\)

\(\Rightarrow-2x=9\)

\(\Rightarrow x=\frac{9}{-2}\)

29 tháng 7 2019

\(\frac{x^2-4x}{x^2+4x}+\frac{27}{2x^2+7x-4}=\frac{7-2x}{2x-1}-1\)

\(\Leftrightarrow\frac{x\left(x-4x\right)}{x\left(x+4x\right)}+\frac{27}{2x^2+7x-4}=\frac{7-2x}{2x-1}-1\)

\(\Leftrightarrow\frac{x\left(x-4\right)}{x\left(x+4\right)}+\frac{27}{2x^2+8x-x-4}=\frac{7-2x}{2x-1}-1\)

\(\Leftrightarrow\frac{x\left(x-4\right)}{x\left(x+4\right)}+\frac{27}{2x\left(x+4\right)-\left(x+4\right)}=\frac{7-2x}{2x-1}-1\)

\(\Leftrightarrow\frac{x\left(x-4\right)}{x\left(x+4\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}=\frac{7-2x}{2x-1}-1\)

\(\Leftrightarrow\frac{x-4}{x+4}+\frac{27}{\left(x+4\right)\left(2x-1\right)}=\frac{7-2x}{2x-1}-1\)

\(\Leftrightarrow\left(x-4\right)\left(2x-1\right)+27=\left(7-2x\right)\left(x+4\right)-\left(x+4\right)\left(2x-1\right)\)

\(\Leftrightarrow2x^4-9x+31=-8x+32-4x^2\)

\(\Leftrightarrow2x^2-9x+31+8x-32+4x^2=0\)

\(\Leftrightarrow6x^2-x-1=0\)

\(\Leftrightarrow6x^2+2x-3x-1=0\)

\(\Leftrightarrow2x\left(3x+1\right)-\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(\text{nhận}\right)\\x=\frac{1}{2}\left(\text{loại}\right)\end{cases}}\)

\(\Rightarrow x=-\frac{1}{3}\)

Vậy: nghiệm phương trình là \(-\frac{1}{3}\)

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

14 tháng 4 2018

\(a,2x-6< 0\Leftrightarrow2x>6\Leftrightarrow x>3\)

\(b,5x+2x< 4+25\Leftrightarrow7x< 29\Leftrightarrow x< \frac{29}{7}\)

\(c,-5x+6>8-10+8x\Leftrightarrow-5x-8x>8-10-6\)

\(-13x>-8\Leftrightarrow x< \frac{8}{13}\)

\(d,3x-12\le2-4x\Leftrightarrow3x+4x\le2+12\)

\(\Leftrightarrow7x\le14\Leftrightarrow x\le2\)

\(e,\frac{3\left(x-3\right)}{6}>\frac{2\left(2x-5\right)}{6}+\frac{6}{6}\Rightarrow3x-9>4x-10+6\)

\(\Leftrightarrow3x-4x>-4+9\Leftrightarrow x>-5\)

\(f,3\left(2x-3\right)>1+2\left(2+2x\right)\Leftrightarrow6x-9>1+4+4x\)

\(6x-4x>14\Leftrightarrow2x>14\Leftrightarrow x>7\)

Tự biểu diễn nha!