K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Giải phương trình
a.|x+4|−2|2x+3|=3−3x (1)
Lập bảng xét dấu
x -4 \(\dfrac{-3}{2}\)
x+4 - 0 + +
2x+3 - - 0 +

- Với \(x\le-4\) thì (1)
<=> -(x+4)+2(2x+3)=3-3x
<=> -x-4+4x+6=3-3x
<=> -x+4x+3x=4-6+3
<=> 6x=1
<=> x=\(\dfrac{1}{6}\)
(L)
- Với \(-4\le x\le\dfrac{-3}{2}\) thì (1)
<=> (x+4)+2(2x+3)=3-3x
<=> x+4+4x+6=3-3x
<=> x+4x+3x=-4-6+3
<=> 8x=-7
<=> x=\(\dfrac{-7}{8}\) (L)
- Với \(x\ge\dfrac{-3}{2}\) thì (1)
<=> x+4-2(2x+3)=3-3x
<=> x+4-4x-6=3-3x
<=> x-4x+3x=-4+6+3
<=> 0x=5
<=> x (vô nghiệm) (L)
Vậy \(S=\varnothing\)

b.3|x−1|+|x−3|=x+5 (2)
Lập bảng xét dấu
x 1 3
x+1 - 0 + +
x-3 - - 0 +

+ Với \(x\le1\) thì (2)
<=> -3(x-1)-(x-3)=x+5
<=> -3x+3-x+3=x+5
<=> -3x-x-x=-3-3+5
<=> -5x=-1
<=> x= \(\dfrac{1}{5}\) (N)
+ Với \(1\le x\le3\) thì (2)
<=> 3(x-1)-(x-3)=x+5
<=> 3x-3-x+3=x+5
<=> 3x-x-x=3-3+5
<=> x=5(L)
+ Với \(x\ge3\) thì (2)
<=> 3(x-1)+(x-3)=x+5
<=> 3x-3+x-3=x+5
<=> 3x+x-x=3+3+5
<=> 3x=11
<=> x=\(\dfrac{11}{3}\) (N)
Vậy \(S=\left\{\dfrac{1}{5};\dfrac{11}{3}\right\}\)


12 tháng 6 2018

Giải:

a) \(\left|x+4\right|-2\left|2x+3\right|=3-3x\)

\(\Leftrightarrow x+4-2\left(2x+3\right)=3-3x\)

\(\Leftrightarrow x+4-4x-6=3-3x\)

\(\Leftrightarrow x-4x+3x=3+6-4\)

\(\Leftrightarrow0x=5\)

Vậy phương trình vô nghiệm

b) \(3\left|x-1\right|+\left|x-3\right|=x+5\)

\(\Leftrightarrow3\left(x-1\right)+x-3=x+5\)

\(\Leftrightarrow3x-3+x-3=x+5\)

\(\Leftrightarrow3x+x-x=5+3+3\)

\(\Leftrightarrow3x=11\)

\(\Leftrightarrow x=\dfrac{11}{3}\)

Thử lại thấy thoả mãn

Vậy ...

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

22 tháng 7 2017

a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)

\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)

\(\Leftrightarrow-7x+12x=20+2\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\dfrac{22}{5}\)

tick cho mk nha

22 tháng 7 2017

b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)

\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)

\(\Leftrightarrow10x^2-19x-33=0\)

\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)

\(x_1=3;x_2=\dfrac{-11}{10}\)

Tick cho mk nha

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

30 tháng 3 2018

a)x5+2x4+3x3+3x2+2x+1=0

<=> x5+x4+x4+x3+2x3+2x2+x2+x+x+1=0

<=>x4(x+1)+x3(x+1)+2x2(x+1)+x(x+1)+(x+1)=0

<=>(x+1)(x4+x3+2x2+x+1)=0

<=>x2(x+1)(x2+x+2+\(\dfrac{1}{x^2}\))=0

<=>x2(x+1)[(x+\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}+\dfrac{1}{x^2}\)]=0

Vì [(x+\(\dfrac{1}{2}\))2\(+\dfrac{7}{4}+\dfrac{1}{x^2}\)]>0 với mọi x thuộc R

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy S={0;-1}

28 tháng 3 2020

a) ĐKXĐ: x khác +2

\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)

<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)

<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)

<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22

<=> x^2 - 7x - 2 = 2x - 22

<=> x^2 - 7x - 2 - 2x + 22 = 0

<=> x^2 - 9x + 20 = 0

<=> (x - 4)(x - 5) = 0

<=> x - 4 = 0 hoặc x - 5 = 0

<=> x = 4 hoặc x = 5

làm nốt đi 

15 tháng 4 2019

a,<=>\(\frac{\left(2x+1\right)^2}{4}\)+\(\frac{2\left(2x-1\right)^2}{4}\)\(\frac{12\left(x+5\right)^2}{4}\)

<=>4x2+4x+1+2(4x2-4x+1)≥12(x2+10x+25)

<=>4x2+4x+1+8x2-8x+2≥12x2+120x+300

<=>4x2+4x+1+8x2-8x+2-12x2-120x-300≥0

<=>-124x-297≥0

<=>124x+297≤0

<=>124x≤-297

<=>x≤\(\frac{-297}{124}\)

15 tháng 4 2019

b, Tương tự câu a

c, |5−3x|=2+x

TH1: 5-3x=2+x

<=> -3x - x = 2 - 5

<=> -4x = -3

<=> x = 3/4

TH2: 5-3x = -2 - x

<=> -3x + x = -2 - 5

<=> -2x = -7

<=> x = 7/2