K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

a.

$x^2-x=y^2-1$
$\Leftrightarrow x^2-x+1=y^2$

$\Leftrightarrow 4x^2-4x+4=4y^2$

$\Leftrightarrow (2x-1)^2+3=(2y)^2$

$\Leftrightarrow 3=(2y)^2-(2x-1)^2=(2y-2x+1)(2y+2x-1)$

Đến đây xét các TH:

TH1: $2y-2x+1=1; 2y+2x-1=3$

TH2: $2y-2x+1=-1; 2y+2x-1=-3$

TH3: $2y-2x+1=3; 2y+2x-1=1$

TH4: $2y-2x+1=-3; 2y+2x-1=-1$

b.

$x^2+12x=y^2$

$\Leftrightarrow (x+6)^2=y^2+36$

$\Leftrightarrow 36=(x+6)^2-y^2=(x+6-y)(x+6+y)$

Đến đây xét trường hợp tương tự phần a.

c.

$x^2+xy-2y-x-5=0$

$\Leftrightarrow x^2+xy=x+2y+5$
$\Leftrightarrow 4x^2+4xy=4x+8y+20$

$\Leftrightarrow (2x+y)^2=4x+8y+20+y^2$

$\Leftrightarrow (2x+y)^2-2(2x+y)+1=y^2+6y+21$

$\Leftrightarrow (2x+y-1)^2=(y+3)^2+12$
$\Leftrightarrow (2x+y-1)^2-(y+3)^2=12$

$\Leftrightarrow (2x+y-1-y-3)(2x+y-1+y+3)=12$

$\Leftrightarrow (2x-4)(2x+2y+2)=12$

$\Leftrightarrow (x-2)(x+y+1)=3$

Đến đây đơn giản rồi.

 

8 tháng 8 2021

a) \(x^2-x=y^2-1\)

\(\Rightarrow x^2-x+1=y^2\)

\(\Rightarrow4x^2-4x+4=4y^2\)

\(\Rightarrow4x^2-4x+1+3=\left(2y\right)^2\)

\(\Rightarrow\left(2x+1\right)^2-\left(2y\right)^2=-3\)

\(\Rightarrow\left(2x-2y+1\right)\left(2x+2y+1\right)=-3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}\left(2x-2y+1\right)\left(2x+2y+1\right)\in Z\\\left(2x-2y+1\right)\left(2x+2y+1\right)\inƯ\left(7\right)\end{matrix}\right.\)

Ta có bảng:

x-y-10-21
x+y1-20-1
x0-1-10
y1-1-1-1

Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(-1;-1\right);\left(-1;-1\right);\left(0;-1\right)\right\}\)

 

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

23 tháng 8 2020

?????

14 tháng 8 2015

a/ \(=3y^2-6y-2x+1\)

b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

c/ \(=\left(2-x\right)^3\)

d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)

\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)

\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)

e/ \(=xy-x^2+2x-y^2+xy-2y\)

\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)

14 tháng 8 2015

a) =(2x+3y-1)2

b)=-(x-1)3

c)=-(x3-6x2+12x-8)=-(x-2)3

d)x3 + 2x2y + xy2 – 9x

    = x(x2 + 2xy + y2 -9)

    = x[(x2 + 2xy + y2) - 32]

    = x[(x + y)2 - 32]

    = x (x + y – 3)(x + y + 3)

e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)

28 tháng 6 2019

\(x^2-4xy+5y^2=16\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16=4^2+0^2=0^2+4^2\)

\(TH1:\left\{{}\begin{matrix}\left(x-2y\right)^2=4^2\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4;x=-4\\y=0\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)

28 tháng 6 2019

\(xy+3x-y=38\)

\(\Leftrightarrow\left(xy-y\right)+\left(3x-3\right)=35\)

\(\Leftrightarrow y\left(x-1\right)+3\left(x-1\right)=35\)

\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=35\)

Làm nốt

13 tháng 2 2017

CHỊU!@@@@@@@@@@@@