Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)
\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)
\(A=-12x\)
\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)
\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)
\(B=-3x-12\)
Câu C tương tự.
Chúc bạn học tốt!!!
A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)
A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)
A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)
A = \(-4x^2-12x-8+4x^2+8=-12x\)
b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)
B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)
B = \(-6x^2-3x-6\)
Bài 2:
a: \(x^2-16-\left(x+4\right)=0\)
=>(x+4)(x-4)-(x+4)=0
=>(x+4)(x-5)=0
=>x=5 hoặc x=-4
b: \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow9x^2-6x+1-9x^2+1=0\)
=>-6x+2=0
=>-6x=-2
hay x=1/3
c: \(4x^2+9=-12x^2\)
\(\Leftrightarrow4x^2+12x^2=-9\)
\(\Leftrightarrow16x^2=-9\)(vô lý)
Do đó: \(x\in\varnothing\)
d: \(4x^2-5x+1=0\)
\(\Leftrightarrow4x^2-4x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)
=>x=1 hoặc x=1/4
e: \(4x^2-4x+3=0\)
\(\Leftrightarrow4x^2-4x+1+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=-2\)(vô lý)
Do đó: \(x\in\varnothing\)
a)\(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x-x^2+4=0\)
\(\Leftrightarrow4-19x=0\Leftrightarrow19x=4\Leftrightarrow x=\dfrac{4}{19}\)
b)\(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-5x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3-5x^2+5x=0\)
\(\Leftrightarrow-15x-3=0\)\(\Leftrightarrow-15x=3\Leftrightarrow x=-\dfrac{1}{5}\)
a, \(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x=x^2-4\)
\(\Leftrightarrow19x=4\)
\(\Leftrightarrow x=\dfrac{4}{19}\)
Vậy...
b, \(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-6x+x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3=5x^2-5x\)
\(\Leftrightarrow-20x-3=-5x\)
\(\Leftrightarrow-15x=3\)
\(\Leftrightarrow x=\dfrac{-1}{5}\)
Vậy...
a)đặt x^2-5x=y
<=> y^2+10y+24=0
<=>(y^2+2.5y+25)=1
<=>(y+5)^2=1
\(\left[\begin{matrix}y+5=1\\y+5=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}y=-4\\y=-6\end{matrix}\right.\)
với y=-4 <=> x^2-5x=-4<=> x(x-4)-(x-4)=0
<=> (x-4)(x-1)=0=>\(\left[\begin{matrix}x=1\\x=4\end{matrix}\right.\)
với y=-6<=> x^2-5x=-6<=> x(x-2)-3(x-2)=(x-2)(x-3)=>\(\left[\begin{matrix}x=2\\x=3\end{matrix}\right.\)
d) trôi hết đề bạn đăng quá nhiều
(x+2)(x+3)(x+4)(x+5)-24=0
<=>[(x+2)(x+5)][(x+3)(x+4)]-24=0
<=>(x^2+7x+10)(x^2+7x+12)-24=0
đặt x^2+7x+11=t
<=> (t-1)(t+1)-24=0
<=>t^2-1-25=0
<=>t^2=25=> t=+-5
với t=5
x^2+7x+11=5<=> x^2+7x+6=0
{a-b+c=0}=> x=-1 hoặc -6
với t=-5
x^2+7x+11=-5<=> x^2+7x+17=0=> vô nghiệm
a) \(7x^2-28=0\Leftrightarrow7\left(x^2-4\right)=0\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) vậy \(x=2;x=-2\)
b) \(\left(2x+1\right)+x\left(2x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\) vậy \(x=-1;x=\dfrac{-1}{2}\)
c) \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)
d) \(9\left(3x-2\right)=x\left(2-3x\right)\Leftrightarrow9\left(3x-2\right)=-x\left(3x-2\right)\)
\(\Leftrightarrow9\left(3x-2\right)+x\left(3x-2\right)=0\Leftrightarrow\left(9+x\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+x=0\\3x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\3x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x=-9;x=\dfrac{2}{3}\)
e) \(5x\left(x-3\right)-2x+6=0\Leftrightarrow5x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(5x-2\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\) vậy \(x=\dfrac{2}{5};x=3\)
a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y
=5x3-7x2y+2xy2+5x-2y
b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-2x+20\)
c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)
=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
=\(-5x+4x-15\)
=\(-x-15\)
Chúc bạn học tốt(mỏi tay quá)
\(a,2x-5=-x+4\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\\ b,\left(4x-10\right)\left(25+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\25+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-5\end{matrix}\right.\\ c,\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)
d, ĐKXĐ:\(x\ne-2,x\ne3\)
\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}+\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6}{\left(x+2\right)\left(3-x\right)}+\dfrac{x^2+2x}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{6-2x}{\left(x+2\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{-x^2+x+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\\ \Rightarrow0=0\left(luôn.đúng\right)\)