Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2x^4-5x^3-27x^2+25x+50=0\)
\(\Leftrightarrow2x^4+2x^3-10x^2-7x^3-7x^2+35x-10x^2-10x+50=0\)
\(\Leftrightarrow2x^2\left(x^2+x-5\right)-7x\left(x^2+x-5\right)-10\left(x^2+x-5\right)=0\)
\(\Leftrightarrow\left(x^2+x-5\right)\left(2x^2-7x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-5=0\\2x^2-7x-10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1\pm\sqrt{21}}{2}\\x=\frac{7\pm\sqrt{129}}{4}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-1-\sqrt{21}}{2};\frac{7-\sqrt{129}}{4};\frac{-1+\sqrt{21}}{2};\frac{7+\sqrt{129}}{4}\right\}\)
x3 + 3x2 - 25x + 21 = 0
Dạng giải phương trình, mấy thánh giỏi rõ giùm em, đừng ghi tắt nha... Hậu tạ
Cái này nhẩm nghiệm được mà,do tổng các hệ số =0 >>>Pt có 1 nghiệm là 1>>>có chứa nhân tử x-1.
Phân tích:x^3+3x^2-25x+21=x^3-x^2+4x^2-4x-21x+21
=(x^2+4x-21)(x-1)=(x+7)(x-3)(x-1)>>>phương trình có 3 nghiệm là -7,3,1
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).
\(\hept{\begin{cases}2x^2+3xy-3y^2=-1\\4x^2-xy=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}36x^2+54xy-54y^2=-18\\4x^2-xy=18\end{cases}}\)
\(\Rightarrow40x^2+53xy-54y^2=0\)
\(\Leftrightarrow\left(40x-27y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}40x=27y\\x=2y\end{cases}}\)
Từ đây bạn rút thế vào một trong hai phương trình ban đầu giải ra nghiệm.
bài này mình biết nè
với x thỏa mãn đk thì ta có pt
<=> \(\sqrt[3]{25x^4\left(2x^2+9\right)}=4x^2+3< =>\sqrt[3]{5x^2.5x^2\left(2x^2+9\right)}=4x^2+3\)
Áp dụng bđt cố si ta có
\(\sqrt[3]{5x^2.5x^2\left(2x^2+9\right)}\le\frac{12x^2+9}{3}=4x^2+3\)
đến đây thì dễ rồi cậu tự tìm dấu = xảy ra nhé