K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016
Điều kiện x # +-1 Ta có PT <=> (-18x^3+22x^2+36x)/[(x-1)^2 (x+1)^2]=0 <=> x(-18x^2 + 22x +36) = 0 tới đây thì bạn tự giải nha
8 tháng 8 2016
  
  
 222222222222
18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

8 tháng 8 2016

Đặt \(\frac{x-2}{x-1}=a;\frac{x+2}{x+1}=b\) ta có: \(pt\Leftrightarrow10a^2+b^2-11ab=0\)

\(\Leftrightarrow10a^2-10ab-ab+b^2=0\Leftrightarrow\left(a-b\right)\left(10a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\10a=b\end{cases}}\)

TH1: \(\frac{x-2}{x-1}=\frac{x+2}{x+1}\)

TH2: \(10.\frac{x-2}{x-1}=\frac{x+2}{x+1}\)

Từ đó em có thể làm tiếp nhé.

8 tháng 8 2016

jup mk vs cac ty oi

9 tháng 12 2019

Em kiểm tra lại đề bài nhé! 

nếu đúng thì đề là \(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)+9x^4=0\).

9 tháng 12 2019

dạ đề đúng đấy ạ

12 tháng 6 2015

a) Tự giải

b) xét denta, đặt điều kiện của m

xét viet x1+x2 vs x1.x2

từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11 

thế viet vao giải, nhơ so sánh đk

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

29 tháng 7 2019

\(\text{a) }10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{x^2-4}{x^2-1}=0\\ DKXD:x\ne-1;x\ne1\\ \Leftrightarrow10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-1\right)}=0\)

Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\)

\(Pt\Leftrightarrow10a^2+b^2-11ab=0\\ \Leftrightarrow10a^2-10ab-ab+b^2=0\\ \Leftrightarrow10a\left(a-b\right)-b\left(a-b\right)=0\\ \Leftrightarrow\left(10a-b\right)\left(a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}10a-b=0\\a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10a=b\\a=b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{10\left(x-2\right)}{x+1}=\frac{x+2}{x-1}\left(1\right)\\\frac{x-2}{x+1}=\frac{x+2}{x-1}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow10\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow10\left(x^2-3x+2\right)=x^2+3x+2\\ \Leftrightarrow9x^2-33x+18=0\\ \Leftrightarrow9x^2-27x-6x+18=0\\ \Leftrightarrow9x\left(x-3\right)-6\left(x-3\right)=0\\ \Leftrightarrow\left(9x-6\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\9x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\left(Tm\right)\)

\(\left(2\right)\Leftrightarrow\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow x^2-3x+2=x^2+3x+2=0\\ \Leftrightarrow6x=0\\ \Leftrightarrow x=0\left(Tm\right)\)

Vậy pt có tập nghiệm \(S=\left\{0;3;\frac{2}{3}\right\}\)

29 tháng 7 2019

\(\text{b) }\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}=12\left(\frac{x-2}{x-4}\right)^2\\ DKXD:x\ne2;x\ne4\\ \Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}\cdot\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)

\(Pt\Leftrightarrow a^2+ab-12b^2=0\\ \Leftrightarrow a^2+4ab-3ab-12b^2=0\\ \Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\\ \Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=-4b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{x+1}{x-2}=\frac{3\left(x-2\right)}{x-4}\left(1\right)\\\frac{x+1}{x-2}=\frac{-4\left(x-2\right)}{x-4}\left(2\right)\end{matrix}\right.\)

Tự giải tiếp nha.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

a.

$x^2-11=0$

$\Leftrightarrow x^2=11$

$\Leftrightarrow x=\pm \sqrt{11}$

b. $x^2-12x+52=0$

$\Leftrightarrow (x^2-12x+36)+16=0$

$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)

Vậy pt vô nghiệm.

c.

$x^2-3x-28=0$

$\Leftrightarrow x^2+4x-7x-28=0$

$\Leftrightarrow x(x+4)-7(x+4)=0$

$\Leftrightarrow (x+4)(x-7)=0$

$\Leftrightarrow x+4=0$ hoặc $x-7=0$

$\Leftrightarrow x=-4$ hoặc $x=7$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

d.

$x^2-11x+38=0$

$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$

$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)

Vậy pt vô nghiệm

e.

$6x^2+71x+175=0$

$\Leftrightarrow 6x^2+21x+50x+175=0$

$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$

$\Leftrightarrow (3x+25)(2x+7)=0$

$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$

$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$