K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Hpt \(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)^2-2x^2y^2=16\\\left(x^3+y^3\right)^2-2x^3y^3=64\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left[\left(x+y\right)^2-2xy\right]-2x^2y^2=16\\\left\{\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\right\}^2-2x^3y^3=64\end{cases}}\)

Đặt a=x+y; b=xy, thay vào hpt rồi giải

28 tháng 11 2018

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

23 tháng 12 2019

hệ phương trình bậc cao thế 

24 tháng 1 2020

Mình đề câu a phải như vậy nè:

\(a,\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-1}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\)\(Đkxđ:\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)

Đặt: \(X=\frac{1}{x-2};Y=\frac{1}{y-1}\)

Ta có hệ sau:

 \(\hept{\begin{cases}X+Y=1\\2X-3Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2\left(1-Y\right)-3Y=1\end{cases}}}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2-5Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=\frac{4}{5}\\Y=\frac{1}{5}\end{cases}}}\)

Với \(X=\frac{4}{5}\Rightarrow\frac{1}{x-2}=\frac{4}{5}\Leftrightarrow4\left(x-2\right)=5\Leftrightarrow x=\frac{13}{4}\)

Với \(Y=\frac{1}{5}\Rightarrow\frac{1}{y-1}=\frac{1}{5}\Leftrightarrow y-1=5\Leftrightarrow y=6\)

Vậy nghiệm của hệ pt là: \(\left(x;y\right)=\left(\frac{13}{4};6\right)\)

Câu b e nghĩ đề như vậy nè:

\(b,\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{3}{6}\end{cases}}\) \(Đkxđ:\hept{\begin{cases}x>7\\x>-6\end{cases}}\)

Đặt \(\frac{1}{\sqrt{x-7}}=a\left(a>0\right);\frac{1}{\sqrt{y+6}}=b\left(b>0\right)\)

Ta có hệ pt mới: \(\hept{\begin{cases}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\end{cases}}\left(tmđk\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x-7=9\\x+6=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=30\end{cases}\left(tmđk\right)}\)

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(16;30\right)\)

17 tháng 1 2019

\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)

17 tháng 1 2019

b,

\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)

Tự xử đoạn còn lại nhé

14 tháng 9 2018

k mk nhé!

thanks!

14 tháng 9 2018

(=)\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\left(1\right)\\y^2-4xy-8y+\left(16x-5x^2+16\right)=0\left(2\right)\end{cases}}\)

Thế (1) vào (2) ta được: (2) (=) 2y-4xy -8y =0 (=) y2 - 2xy - 4y =0 (=) y(y-2x-4)=0 (=) y=0 hoặc y=2x +4

Với y=0 => x=-4/5 hoặc x=4

Với y=2x+2. Thế vào (1) ta được x=0 và y=4