Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\left(1\right)\Leftrightarrow\left(x-2y\right)\left(x+y+1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-2y=0\\x+y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2y\\x=-1-y\end{matrix}\right.\)
*)Xét \(x=2y\Rightarrow pt\left(2\right)\Leftrightarrow4y^2+y^2=1\Leftrightarrow5y^2=1\)
\(\Leftrightarrow y^2=\frac{1}{5}\Leftrightarrow y=\pm\frac{1}{\sqrt{5}}\)\(\Leftrightarrow x=2y=2\cdot\pm\frac{1}{\sqrt{5}}=\pm\frac{2}{\sqrt{5}}\)
*)Xét \(x=-1-y\Rightarrow pt\left(2\right)\Leftrightarrow y^2+2y+1+y^2=1\)
\(\Leftrightarrow2y^2+2y=0\Leftrightarrow2y\left(y+1\right)=0\)\(\Leftrightarrow\left[\begin{matrix}y=0\\y=-1\end{matrix}\right.\)
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
Lấy pt dưới - pt trên ta thu được:
\(x^2+2x+2y+xy=0\)
\(\Leftrightarrow x\left(x+2\right)+y\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+y\right)=0\)
Nếu x + 2 =0 suy ra x = -2
Thay vào pt trên ta được: \(y^2+2y+1=0\Leftrightarrow\left(y+1\right)=0\Leftrightarrow y=-1\)
Với x + y = 0 suy ra x = -y. Thay vào pt trên ta thu được:
\(y^2+y^2+1=0\Leftrightarrow2y^2+1=0\) (vô lí do VT > 0 với mọi y). PT vô nghiệm với x + y = 0
Do vậy (x;y) = (-2;-1)
P/s: Em mới học, sai bỏ qua
\(\left\{\begin{matrix}x^2+x-xy-2y=0\\x^2+y^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left(x+y+1\right)\left(2y-x\right)=0\\x^2+y^2=1\end{matrix}\right.\)
Với x + y + 1 = 0 \(\Rightarrow\)x = - y - 1 thế vô pt dưới được
\(\left(-y-1\right)^2+y^2=1\)
\(\Leftrightarrow\left[\begin{matrix}y=0\\y=-1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
Với 2y - x = 0 \(\Rightarrow\)2y = x thế vào pt dưới được
\(\left(2y\right)^2+y^2=1\)
\(\Leftrightarrow\left[\begin{matrix}y=\frac{1}{\sqrt{5}}\\y=-\frac{1}{\sqrt{5}}\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=\frac{2}{\sqrt{5}}\\x=-\frac{2}{\sqrt{5}}\end{matrix}\right.\)