Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+y\right)^2=4\\\left(x-y\right)^2=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+y=\pm2\\x-y=\pm4\end{matrix}\right.\)
Đk: \(y\ne0\)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy-6y=xy+y^2+x-5y\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2-y-x=0\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)\left(x-y\right)-\left(x+y\right)=0\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6y}{x}\left(x-y-1\right)=0\\x+y=\dfrac{6y}{x}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\x+y=\dfrac{6y}{x}\\x,y\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\1+2y=\dfrac{6y}{1+y}\\x,y\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\1+2y+y+2y^2=6y\\x,y\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\2y^2-3y+1=0\left(@\right)\\x,y\ne0\end{matrix}\right.\)
(@) \(\Leftrightarrow\left[{}\begin{matrix}y=1\left(N\right)\\y=\dfrac{1}{2}\left(N\right)\end{matrix}\right.\)
Với y=1, ta có x=2 (N)
Với y= 1/2 , ta có x= 3/2 (N)
KL : nếu x= 2 thì y=1
nếu x=3/2 thì y=1/2
Xét PT bậc $2$ ẩn $x$ là \(2x^2+x(y-5)-y^2+y+2=0\) có \(\Delta =(3y-3)^2\) nên dễ dàng phân tích thành nhân tử.
PT \((1)\Leftrightarrow (x+y-2)(2x-y-1)=0\) \(\Rightarrow \left[ \begin{array}{ll} x+y=2 \\ \\ 2x-y-1=0 \end{array} \right.\)
Nếu \(x+y=2\). Thay vào PT \((2)\Rightarrow xy=1\). Từ đó dễ dàng thu được \((x,y)=(1,1)\)
Nếu \(2x-1=y\). Thay vào PT $(2)$ suy ra \(5x^2-x-4=0\Rightarrow x=1\) hoặc \(x=\frac{-4}{5}\). Tương ứng \(y=1\) và \(\frac{-13}{5}\)
Vậy HPT có nghiệm \((x,y)=(1,1),(\frac{-4}{5},\frac{-13}{5})\)
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
Ta thấy (x,y)=(0,0) ko là nghiệm của hệ phương trình
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2+xy+y^2=0\left(1\right)\\xy^2-4=x^2\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (1) cho (2) ta được: \(y^2+xy+4=-x^2\Leftrightarrow x^2+xy+y^2+4=0\Leftrightarrow x^2+xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=-4\) \(\Leftrightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2=-4\) Vô lí \(\Rightarrow\) Ko có x,y
Vậy hệ phương trình vô nghiệm