Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x,y,z\ge0\)
Từ pt đầu tiên, áp dụng BĐT Cauchy: \(1+y\ge2\sqrt{y}\) \(\Rightarrow\sqrt{x}\left(1+y\right)\ge2\sqrt{xy}\)
\(\Rightarrow2y\ge2\sqrt{xy}\Rightarrow\sqrt{y}\ge\sqrt{x}\Rightarrow y\ge x\)
Tương tự ta có \(2z=\sqrt{y}\left(1+z\right)\ge2\sqrt{yz}\Rightarrow z\ge y\)
\(2x=\sqrt{z}\left(1+x\right)\ge2\sqrt{xz}\Rightarrow x\ge z\)
\(\Rightarrow\left\{{}\begin{matrix}y\ge x\\z\ge y\\x\ge z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Thay vào pt đầu ta được:
\(\sqrt{x}\left(1+x\right)=2x\Leftrightarrow2x-\sqrt{x}\left(1+x\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1-x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-x+2\sqrt{x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-\left(\sqrt{x}-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)
Vậy hệ có 2 bộ nghiệm:
\(\left(x,y,z\right)=\left(0,0,0\right);\left(1,1,1\right)\)
a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:
\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)
\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)
\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)
\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)
P/s: Không chắc cho lắm ạ.
Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,
Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6
Help meeee, please!
thanks nhiều
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
1) Từ đề bài => (17x + 2y)+(x - 2y) = 2011|xy|+3xy
<=> 18x = 2011|xy|+3xy (1)
Dễ thấy x = y = 0 là nghiệm của (1)
Bây giờ ta xét trường hợp x và y khác 0
+ Nếu xy < 0, từ (1) => 18x = -2011xy + 3xy
<=> 18x = -2008xy
<=> y = -1004/9
Thay vào x - 2y = 3xy ta được:
x - 2.(-1004/9) = 3.(-1004/9).x
<=> x = -2008/3021 (không TM xy < 0)
+ Nếu xy > 0, từ (1) => 18x = 2011xy + 3xy
<=> 18x = 2014xy
<=> y = 1007/9
Thay vào x - 2y = 3xy ta được:
x - 2.1007/9 = 3x.1007/9
<=> x = -1007/1506 (ko TM)
Vậy ...
2. DKXD: \(x\ge0;y\ge z;z\ge x\)
\(\left(1\right)\Leftrightarrow2\sqrt{x}+2\sqrt{y-z}+2\sqrt{z-x}=y+3\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-z-2\sqrt{y-z}+1\right)+\left(z-x-2\sqrt{z-x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-z}-1\right)^2+\left(\sqrt{z-x}-1\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x}-1=0\\\sqrt{y-z}-1=0\\\sqrt{z-x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=3\\z=2\end{matrix}\right.\)(TM DKXD)
KL: ...
a, #Góp ý từ nhiều người nhưng họ không giải nên t làm giùm
ĐK: \(x\le3\)
\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\left(1\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+y^2+1-2xy+2x-2y=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\) \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) Thay vào (2)
\(\left(2\right)\)\(\Leftrightarrow x^3+3\left(x+1\right)^2+5x-12=\left[12-\left(x+1\right)\right]\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+8x=\left(11-x\right)\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\left(3-x\right)\sqrt{3-x}+8\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\sqrt{\left(3-x\right)^3}+3\sqrt{\left(3-x\right)^2}+8\sqrt{3-x}\)
\(\Leftrightarrow x=\sqrt{3-x}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{13}}{2}\left(tm\right)\Rightarrow y=\frac{1+\sqrt{13}}{2}\)
Vậy...
Akai Haruma, No choice teen, Arakawa Whiter, Phạm Hoàng Lê Nguyên, Vũ Minh Tuấn, tth, HISINOMA KINIMADO, Nguyễn Việt Lâm
Mn giúp e vs ạ! thanks!
Ta bắt đầu bằng việc giả sử một giá trị ban đầu cho x, y và z, sau đó lặp lại quá trình tính toán cho đến khi đạt được độ chính xác mong muốn.
Ví dụ, giả sử ta chọn x = 1, y = 1 và z = 1 làm giá trị ban đầu. Sau đó, ta thực hiện các bước sau:
Bước 1: Tính toán giá trị mới cho x, y và z bằng cách sử dụng các phương trình đã cho: x_new = (2y - 1) / sqrt(y) y_new = (2z - 1) / sqrt(z) z_new = (2*x - 1) / sqrt(x)
Bước 2: Kiểm tra độ chính xác của giá trị mới so với giá trị cũ. Nếu đạt được độ chính xác mong muốn, ta dừng lại. Nếu không, ta lặp lại bước 1 với giá trị mới của x, y và z.
Tiếp tục lặp lại quá trình trên cho đến khi đạt được độ chính xác mong muốn. Khi đó, ta sẽ có giá trị x, y và z tương ứng là nghiệm của hệ phương trình đã cho.
Cảm ơn bạn nha~~~