K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

Ta có:

x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)

⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1

⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)

Đặt (x2+1;x+1)=d(x2+1;x+1)=d

⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d

⟹2⋮d⟹2⋮d

Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1

⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2

Từ đây dễ dàng suy ra x=0x=0

⟹y=0;y=−1⟹y=0;y=−1

Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)

6 tháng 12 2017

\(\left\{{}\begin{matrix}x+y+xy=7\\x^3+y^3+3\left(x^2+y^2\right)+3\left(x+y\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\\left(x+1\right)^3+\left(y+1\right)^3=72\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^3\left(y+1\right)^3=512\\\left(x+1\right)^3+\left(y+1\right)^3=72\end{matrix}\right.\)

Đặt \(\left(x+1\right)^3=a;\left(y+1\right)^3=b\) Ta có hệ phương trình sau :

\(\left\{{}\begin{matrix}ab=512\\a+b=72\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=72-b\left(1\right)\\\left(72-b\right).b=512\left(2\right)\end{matrix}\right.\)

Từ (2) => \(\left[{}\begin{matrix}b=64\\b=8\end{matrix}\right.\)

- Với b=64 => a=8

=> x=1;y=3

- Với b=8=>a=64

=> x=3;y=1

Vậy nghiệm của hệ phương trình là :

(x;y)\(\in\){(1;3),(3;1)}

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bạn nên viết đề bằng công thức toán (nhấn vào hộp biểu tượng $\sum$)

Viết thế này khó nhìn quá.

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn

30 tháng 8 2019

\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)

\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)

13 tháng 8 2015

bạn lớp 9 đúng k! 

vậy đã học hệ pt rồi nhỉ.

đặt xy là a

đặt x+y là b                      vậy ta biến đổi thành a+b=-1 và a*b=-12   từ đó bạn hãy giải hệ pt  ra được a=x+y=-4 và b=x*y=3

bạn lập tiếp hpt tính x,y  rồi tính p nhé. chúc thành công

24 tháng 10 2015

Cho xy+x+y = -1 (1)

 x2y+xy2=xy(x+y) (2)

Đặt x+y = a, x.y =b

thay vào (1) và (2)  ta có hệ phương trình :

                     a+b = -1

                     a.b = -12

a và b sẽ là nghiệm của phương trình: X2 + X -12 = 0

    giải ra ta được X1 = -4 ; X2 = 3 => a = -4, b = 3 hoặc a = 3; b = -4

hay x+y = -4, xy = 3 hoặc x+y = 3, xy = -4

Tính P=x3+y3 = (x+y)(x2-xy+y2) = (x+y)(x2+ 2xy+y2 -3xy ) = (x+y)[(x+ y)2​ -3xy)]

TH1: x+y = -4, xy = 3 

                P=x3+y3 = (x+y)[(x+ y)2​ -3xy)] = -4.[(-4)2-3.3] = -28

TH1: x+y = 3, xy = -4

                P=x3+y3 = (x+y)[(x+ y)2​ -3xy)] = 3.[32-3.(-4)] = 63