Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0
\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0
Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10
1) |x + 3| + |2x + y - 4| = 0
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)
\(B=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)....\left(1-\frac{2}{99}\right)\)
\(B=\frac{3}{5}\cdot\frac{5}{7}\cdot\frac{7}{9}\cdot...\cdot\frac{97}{99}\)
\(B=\frac{3\cdot5\cdot7\cdot...\cdot97}{5\cdot7\cdot9\cdot...\cdot99}=\frac{3}{99}=\frac{1}{33}\)
Vậy B = \(\frac{1}{33}\)
\(\left[1-\frac{2}{5}\right]\left[1-\frac{2}{7}\right]\left[1-\frac{2}{9}\right]...\left[1-\frac{2}{99}\right]\)
\(=\frac{3}{5}\cdot\frac{5}{7}\cdot\frac{7}{9}\cdot...\cdot\frac{97}{99}\)
\(=\frac{3\cdot5\cdot7\cdot...\cdot97}{5\cdot7\cdot9\cdot...\cdot99}=\frac{3}{99}=\frac{1}{33}\)
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
1/2^0+1/2^1+1/2^2+.....+1/2^10
2xA=2x(1/2^0+1/2^1+......+1/2^10)
2xA=1+1/2^2+......+1/2^11
2xA-A=(1+1/2^2+...+1/2^11)-(1/2^0+1/2^1+....+1/2^10)
A=1+1/2^2+......+1/2^11-1/2^0-1/2^1-.....-1/2^10
=>A=1-1/2^10
vậy A= 1-1/2^10
=2 - 1/1024
=2047/1024