K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

A B E F x y M K O

a)\(\hept{\begin{cases}Ax⊥AB\\By⊥AB\end{cases}}\)=> Ax // By.\(\Delta KFB\)có EA // FB nên\(\frac{KF}{KA}=\frac{BF}{AE}\)(hệ quả định lí Ta-lét) mà EA = EM ; FM = FB (tính chất của 2 tiếp tuyến)

\(\Rightarrow\Delta AEF\)\(\frac{KF}{KA}=\frac{MF}{ME}\)nên MK // AE (định lí Ta-lét đảo) mà\(AE⊥AB\Rightarrow MK⊥AB\)

b)\(\widehat{EOM}=\frac{\widehat{AOM}}{2};\widehat{FOM}=\frac{\widehat{MOB}}{2}\)(tính chất 2 tiếp tuyến) mà\(\widehat{EOM}+\widehat{FOM}=180^0\)(kề bù)

\(\Rightarrow\widehat{EOF}=\widehat{EOM}+\widehat{FOM}=\frac{180^0}{2}=90^0\)

\(\Rightarrow\Delta EOF\)vuông tại O có OE + OF > EF (bđt tam giác) ; OE + OF < 2EF (vì OE,OF < EF)

\(\Rightarrow1< \frac{OE+OF}{EF}< 2\Rightarrow2< \frac{P_{EOF}}{EF}< 3\Rightarrow\frac{1}{3}< \frac{EF}{P_{EOF}}< \frac{1}{2}\)(1)

Hình thang AEFB (AE // FB) có diện tích là :\(\frac{\left(AE+FB\right).AB}{2}=\frac{\left(EM+FM\right).2R}{2}=EF.R\)

SAEO = SMEO vì có đáy OA = OM ; đường cao AE = ME\(\Rightarrow S_{MEO}=\frac{1}{2}S_{AEMO}\) 

SFOM = SFOB  vì có đáy FM = FB ; đường cao OM = OB\(\Rightarrow S_{FOM}=\frac{1}{2}S_{MFBO}\)

\(\Rightarrow S_{EOF}=\frac{1}{2}\left(S_{AEMO}+S_{MFBO}\right)=\frac{EF.R}{2}\).Từ tâm đường tròn nội tiếp I của\(\Delta EOF\)kẻ các đường vuông góc với OE,OF,EF thì\(S_{EOF}=S_{EIF}+S_{EIO}+S_{OIF}\)\(\Leftrightarrow\frac{EF.R}{2}=\frac{EF.r+EO.r+OF.r}{2}\)

\(\Rightarrow EF.R=P_{EOF}.r\Rightarrow\frac{r}{R}=\frac{EF}{P_{EOF}}\)(2).Thay (2) vào (1) ta có đpcm.

19 tháng 1 2017

sao nguyên bài khó thế

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

16 tháng 7 2016

Giải nhanh hộ mình

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.a) cm: tam giác ABC vuông tại C.b) cm NE vuông góc ABc) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)B3: Cho nửa đường tròn (O)đường...
Đọc tiếp

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?

B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.

a) cm: tam giác ABC vuông tại C.

b) cm NE vuông góc AB

c) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)

B3: Cho nửa đường tròn (O)đường kính AB=2R. Gọi Ax, By là các ti8a vuông góc với AB tại A và B(Ax,By và nửa đường tròn cùng thuộc 1 nửa mặt phẳng bờ AB). Qua điểm C thuộc nửa đường tròn( C khác A, B). kẻ đường thẳng d là tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự ở M và N.

a)cm :MN=AM+BN

b) cm \(\Delta\)MON vuông

 c) AC giao với MO tại I, CB giao với ON tại K, cm tứ giác CIOK là hình chữ nhật

d) gọi D là giao điểm của BC  với Ax, cm MD=MA

0