Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
l) S = 3 - 32 + 33 - 34 + ... + 395 - 396
= 3(1 - 3) + 33(1 - 3) + ... + 395(1 - 3)
= 2(3 + 33 + ... + 395)
Đặt A = 3 + 33 + ... + 395
32A = 32(3 + 33 + ... + 395)
9A = 33 + 35 + ... + 397
9A - A = (33 + 35 + ... + 397) - (3 + 33 + ... + 395)
8A = 397 - 3
A = \(\frac{3^{97}-3}{8}\)
=> S = \(2\left(\frac{3^{97}-3}{8}\right)=\frac{3^{97}-3}{4}\)
m) ttt (k hiểu cứ hỏi)
Thôi mấy bn giải luôn cho mik phần còn lại ik, mik ngu Toán lắm :v
Gọi tổng đề bài cho là A
\(1+2+3+...+100=\frac{\left(100+1\right).100}{2}=5050\)
\(B=1^2+2^2+3^2+...+10^2\)
\(=1.2-1+2.3-2+3.4-3+...+10.11-10\)
\(=\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)\)(1)
Đặt \(C=1.2+2.3+3.4+...+10.11\)
\(3C=1.2.3+2.3.3+3.4.3+...+10.11.3\)
\(3C=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)\)
\(3C=10.11.12\)
\(C=4.10.11=440\)(2)
Từ (1) và (2), ta được:
\(B=440-\frac{10.11}{2}=385\)
\(65.100-13.15.37=65.100-13.5.37=65.100-65.111=65\left(100-111\right)=65.\left(-11\right)=-715\)
Vậy \(A=5050.385-715=1943535\)
=> \(3M=3^2+3^3+3^4+...+3^{101}\)
=> \(3M-M=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
=> \(2M=3^{101}-3\)
=> \(M=\frac{3^{101}-3}{2}\).
\(2N=2-2^2+2^3-2^4+...-2^{100}+2^{101}\)
=> \(2N-N=\left(2-2^2+2^3-2^4+...-2^{100}+2^{101}\right)-\left(1-2+2^2-2^3+...-2^{99}+2^{100}\right)\)
=> \(N=2^{101}-1\)
M = 3+3^2+3^3+....+3^100
3M = 3^2+3^3+...+3^101
3M - M = (3^2-3^2) + ... + (3^100 - 3^100) + 3^101 - 3
2M = 3^101 - 3
Vậy M = \(\frac{3^{101}-3}{2}\)
\(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{10}\)
\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{10}\)
Thấy: 3 > 2 và 910 > 810
Nên \(3^{21}>2^{31}\)
Bài 2:
\(A=1+2+2^2+.....+2^{100}\)
\(2A=2+2^2+.......+2^{101}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+......+2^{101}-1\)
Vậy A = 2101 - 1
bài cuối đây:
(x+1)+(x+2)+(x+3)+...+(x+100)=5750
[(x+100)+(x+1)].100 /2 =5750
(2x+101).100 /2 =5750
(2x+101).50=5750
2x+101=115
2x=14
x=7
a )
2100+2100= 2100(1+1) =2100.2 = 2100+1= 2101
b)
3100+3100 = 3100(1+1) = 2.3100
3101= 3100.3
ta thấy 3. 3100 > 2.3100 Vậy 3101 > 3100+3100
c) 20177012 > 20172337.3 >>> 80002337
70122017 < 80002337
suy ra: 20177012 >>> 70122017