K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

chịu thôi

bài này mình học qua rùi

nhưng ko nhớ 22222

3 tháng 9 2016

kho that!

18 tháng 11 2018

tra loi cho mik

21 tháng 1 2018

Gọi 3 phương trình đó theo thứ tự là (1); (2); (3)

Lấy (1) - (2) ta được

x2 - z2 - 2x + 2z = 0

<=> (x - z)(x + z - 2) = 0

Làm tiếp sẽ ra

20 tháng 1 2018

Em mới học lớp 7 nên không biết làm đúng không nữa

Ta có hệ phương trình:

\(\hept{\begin{cases}x^2+y^2-2\left(x+y\right)=0\\y^2+z^2-2\left(y+z\right)=0\\x^2+z^2-2\left(x+z\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2=2\left(x+y\right)=2x+2y\\y^2+z^2=2\left(y+z\right)=2y+2z\\x^2+z^2=2\left(x+z\right)=2x+2z\end{cases}}}\)(1)

Mà \(\hept{\begin{cases}x^2+y^2\ge0\\y^2+z^2\ge0\\x^2+z^2\ge0\end{cases}}\)Do đó \(\hept{\begin{cases}2x+2y\ge0\\2y+2z\ge0\\2x+2z\ge0\end{cases}}\)Suy ra \(x,y,z\ge0\)(2)

Từ (1) và (2):

\(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)

13 tháng 7 2019

câu a) sáng giải

b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm 

14 tháng 7 2019

a) ĐK: \(x,y\ne-1\)

\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3) 

(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)

Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)

\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)

Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 ) 

tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)

b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được: 

\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)

\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm 

21 tháng 7 2020

đây là bài bất IMO 2008 

Đặt \(a=\frac{x}{x-1};b=\frac{y}{y-1};c=\frac{z}{z-1}\)từ đó giả thiết trở thành 

\(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)Suy ra được : \(a+b+c-ab-bc-ca=1\)

Bài toán bây giờ trở thành chứng minh \(a^2+b^2+c^2\ge2\left(a+b+c-ab-bc-ca\right)-1\)

\(< =>\left(a+b+c-1\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

2 tháng 1 2020

Hệ đã cho tương ứng với :

\(\hept{\begin{cases}x+y+xy=7\\\left(x+y\right)^2-xy+x+y=17\end{cases}}\)

Đătl \(x+y=S;xy=P\) , giải hệ trên ta được : \(\hept{\begin{cases}S=4\\P=3\end{cases}}\)hoặc \(\hept{\begin{cases}S=-6\\P=13\end{cases}}\)

Thep định lí Vi-ét đảo thì x , y là các nghiệm của phương trình:

\(t^2-4t+3=0\) hoặc \(t^2+6t+13=0\)

Từ đó được 2 nghiệm của hệ là :

\(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)