K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

Cho x; y \(\inℤ\)?

Bg

Ta có: \(\hept{\begin{cases}\left(x+y\right)^2=9\\x^2+y^2=5\end{cases}}\)  (x; y \(\inℤ\))

Xét (x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> x2 + y2 + 2xy = 9

Mà x2 + y2 = 5 (đề cho)

=> 5 + 2xy = 9

=> 2xy = 9 - 5

=> 2xy = 4

=> xy = 4 : 2

=> xy = 2 = 1.2 = 2.1 = -1.-2 = -2.-1

Vậy các cặp số nguyên {x; y} là: {1; 2}; {2; 1}; {-1; -2}; {-2; -1}

3 tháng 8 2020

\(\hept{\begin{cases}\left(x+y\right)^2=9\left(1\right)\\x^2+y^2=5\left(2\right)\end{cases}}\)

Lấy pt (1) trừ pt (2) theo vế với vế, ta được :

\(\left(x+y\right)\left(x+y\right)-x^2-y^2=4\)

\(\Rightarrow x^2+yx+xy+y^2-x^2-y^2=4\)

\(\Rightarrow2xy=4\)

\(\Rightarrow xy=2\)

Còn lại dễ rồi 

Đây mà toán lớp 1 à.

24 tháng 1 2019

Chà chà :) toán lớp 1 khó phết chứ đùa :3 phải đi học lại lớp 1 thôi

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất

1 tháng 8 2020

b) \(\hept{\begin{cases}xy+x+1=7y\left(1\right)\\x^2y^2+xy+1=13y^2=1\left(2\right)\end{cases}}\)

từ (2) ta có y khác 0 do đó

hệ trở thành \(\hept{\begin{cases}x+\frac{x}{y}+\frac{1}{y}=7\\x^2+\frac{x}{y}+\frac{1}{y^2}=13\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{y}\right)+\frac{x}{y}=7\\\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=13\end{cases}}}\)

đặt a=\(x+\frac{1}{y};b=\frac{x}{y}\)

hệ viết được dưới dạng \(\hept{\begin{cases}a+b=7\\a^2-b=13\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=17\\a^2+a-20=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-5\\b=12\end{cases}}}\)hay \(\hept{\begin{cases}a=4\\b=3\end{cases}}\)

với a=-5; b=12 ta được \(\hept{\begin{cases}x+\frac{1}{y}=5\\x\cdot\frac{1}{y}=12\end{cases}}\)

(x,\(\frac{1}{y}\)là nghiệm phương trình t2+5t+12=0, vô nghiệm)

với a=4, b=3 ta được \(\hept{\begin{cases}x+\frac{1}{y}=4\\x\cdot\frac{1}{y}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)hoặc \(\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)

vậy hệ đã cho 2 nghiệm (x;y)=(3;1);(\(\left(1;\frac{1}{3}\right)\)

1 tháng 8 2020

a) điều kiện x\(\ne\)1 phương trình đã cho

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3\frac{x^2}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-1=-8\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^3+\frac{3x^2}{x-1}-1=\left(-2\right)^3\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}-1\right)^3=\left(-2\right)^3\Leftrightarrow\frac{x^2}{x-1}=-2\)

\(\Leftrightarrow\frac{x^2}{x-1}+1=0\Leftrightarrow x^2+x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)(thỏa mãn)

vậy x=\(\frac{1\pm\sqrt{5}}{2}\)là nghiệm của phương trình

20 tháng 5 2019

\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)

Dấu " = " xảy ra <=> a=b=c=1/4  ( cái này bạn tự giải rõ nhé)

20 tháng 5 2019

:D. cái gì đây

12 tháng 1 2019

b​k roi sao con lm?

12 tháng 1 2019

bữa sau bớt nhây,trượt xuống mòi cả tay

@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)\(\Rightarrow a=x^2-4x+4\)Như vậy , vs mỗi...
Đọc tiếp

@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)

\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)

\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)

Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)

\(\Rightarrow a=x^2-4x+4\)

Như vậy , vs mỗi giá trị của a , ta tìm được nhiều nhất 2 giá trị của x

\(Pt\left(1\right)\Leftrightarrow\left(a-26\right)\left(a-16\right)=m\)

              \(\Leftrightarrow a^2-42a+416=m\)

              \(\Leftrightarrow a^2-42a+416-m=0\)(2)

Để pt ban đầu có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}441-416+m>0\\42>0\left(Luonđung\right)\\416-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-25\\m< 416\end{cases}}\Leftrightarrow-25< m< 416\)

Khi đó theo hệ thức Vi-ét \(\hept{\begin{cases}a_1+a_2=42\\a_1a_2=416-m\end{cases}}\)

Với giá trị của m vừa tìm đc ở trên thì mỗi giá trị a1 và a2 sẽ nhận 2 giá trị của x 

Giả sử a1 nhận 2 nghiệm x1 và xcòn a2 nhận 2 nghiệm x3 và x4 (đoạn này ko hiểu ib nhá)

*Xét a1 nhận x1 và x2 

Khi đó phương trình \(a_1=x^2-4x+4\) sẽ nhận 2 nghiệm x1 và x2

 \(pt\Leftrightarrow x^2-4x+4-a_1=0\)(Đoạn này ko cần Delta nữa vì mình đã giả sử có nghiệm rồi)

Theo hệ thức Vi-ét \(\)\(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=4-a_1\end{cases}}\)

*Xét a2 nhận x3 và x4

Tương tự trường hợp trên ta cũng đc \(\hept{\begin{cases}x_3+x_4=4\\x_3x_4=4-a_2\end{cases}}\)

Ta có \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

\(\Leftrightarrow\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)

 \(\Leftrightarrow\frac{4}{4-a_1}+\frac{4}{4-a_2}=4\)

\(\Leftrightarrow\frac{1}{4-a_1}+\frac{1}{4-a_2}=1\)

\(\Leftrightarrow\frac{4-a_2+4-a_1}{\left(4-a_1\right)\left(4-a_2\right)}=1\)

\(\Leftrightarrow\frac{8-\left(a_1+a_2\right)}{16-4\left(a_1+a_2\right)+a_1a_2}=1\)

\(\Leftrightarrow\frac{8-42}{16-4.42+416-m}=1\)

\(\Leftrightarrow\frac{-34}{264-m}=1\)

\(\Leftrightarrow-34=264-m\)

\(\Leftrightarrow m=298\)(Thỏa mãn)

Tính toán có sai sót gì thì tự fix nhá :V

 

1
15 tháng 12 2021

không phải toán lớp một nha bạn 

Chuyên mục , học giỏi mỗi ngày 2 hằng đằng thức bá đạo của lớp 9 " có thể sử dụng cho lớp 8 , 7 "  " hằng đẳng thức 1 "   \(A^2=B\Leftrightarrow A=\pm\sqrt{b}\)VD : \(\hept{\begin{cases}\left(x+2\right)^2=4\\x+2=2\\x+2=-2\end{cases}\Leftrightarrow}x=0,-4\Leftrightarrow\hept{\begin{cases}\left(-4+2\right)^2=4\\\left(0+2\right)^2=4\end{cases}}\)hằng đẳng thức 2  " \(\sqrt{A^2}=|a|\)Muốn biết nó tại sao thì hãy nhìn lại hằng...
Đọc tiếp

Chuyên mục , học giỏi mỗi ngày 

2 hằng đằng thức bá đạo của lớp 9 " có thể sử dụng cho lớp 8 , 7 "  

" hằng đẳng thức 1 "   \(A^2=B\Leftrightarrow A=\pm\sqrt{b}\)

VD : \(\hept{\begin{cases}\left(x+2\right)^2=4\\x+2=2\\x+2=-2\end{cases}\Leftrightarrow}x=0,-4\Leftrightarrow\hept{\begin{cases}\left(-4+2\right)^2=4\\\left(0+2\right)^2=4\end{cases}}\)

hằng đẳng thức 2  " \(\sqrt{A^2}=|a|\)

Muốn biết nó tại sao thì hãy nhìn lại hằng đằng thức 1

Vd : \(|2x+1|=|x+2|\)

\(\sqrt{\left(2x+1\right)^2}=\sqrt{\left(x+2\right)^2}\)

\(\left(2x+1\right)^2=\left(x+2\right)^2\) " bình phương 2 vế phá căn

\(\left(2x+1-\left(x+2\right)\right)\left(2x+1+\left(x+2\right)\right)=0\) " hằng đẳng thức số 3"

\(\orbr{\begin{cases}2x+1-x-2\Leftrightarrow x=1\\2x+x+1+2\Leftrightarrow3x=-3\Leftrightarrow x=-1\end{cases}}\)

vậy là  các ngươi có thể phá trị tuyệt đối mà ko cần xét các TH  

lũ con người các ngươi hãy biết ơn chúa pain okay

 

 

 

 

5
30 tháng 6 2018

bn rảnh vc

thế giới tồn tại loại rảnh và xàm l như bn cx tốt :)

cảm ơn về chuyên mục của chúa PaiN nhá :))

30 tháng 6 2018

ta đã tốn thời gian để share cách giải toán cho những thằng ngu như bạn ? bạn phải biết ơn chứ ? 

nếu bạn biết rồi thì biến okay