K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

29 tháng 11 2016

Học vi-et phương trình bậc 3 chưa bạn. Nếu học rồi thì áp dụng vô là tìm được nghiệm nhé

29 tháng 11 2016

mk chưa học đến cái đó

31 tháng 3 2016

đề đây à \(\int^{x^2+y^2+xy=37}_{\int^{x^2+z^2+xz=38}_{y^2+z^2+yz=19}}\)
 

31 tháng 3 2016

Giúp tớ đi

I. Giải pt: \(x^2-4x-2\sqrt{2x-1}+1=0\) II. Giải hệ phương trình 1. (x - y)^2 - (x - y) = 6 và 2(x^2 + y^2) = 5xy Giải hệ phương trình 2: 13) xy - 2x - y + 2 = 0; 3x + y = 8 14) (x + y)^2 - 4(x + y) = 12; (x - y)^2 - 2(x - y) = 3 15) 3/x - 1/y = 7; 2/x - 1/y = 8 16) 1/x + 1/y = 16; 1/y + 1/z = 20; 1/z + 1/x = 18 17) \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\) 18) xy/x + y = 8/3; yz/y + z = 12/5; zx/x + z = 24/7 19)...
Đọc tiếp

I. Giải pt: \(x^2-4x-2\sqrt{2x-1}+1=0\)

II.

Giải hệ phương trình 1. (x - y)^2 - (x - y) = 6 và 2(x^2 + y^2) = 5xy

Giải hệ phương trình 2:

13) xy - 2x - y + 2 = 0; 3x + y = 8

14) (x + y)^2 - 4(x + y) = 12; (x - y)^2 - 2(x - y) = 3

15) 3/x - 1/y = 7; 2/x - 1/y = 8

16) 1/x + 1/y = 16; 1/y + 1/z = 20; 1/z + 1/x = 18

17) \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\)

18) xy/x + y = 8/3; yz/y + z = 12/5; zx/x + z = 24/7

19) \(\left\{{}\begin{matrix}\dfrac{4}{z-1}+2x=7\\5x-3y=3\\\dfrac{2}{z-1}+y=4,5\end{matrix}\right.\)

20) x^2 + xy + xz = 2; y^2 + yz + xy = 3; z^2 + xz + yz = 47

20) 3xy - x - y = 3; 3yz - y - z = 13; 3zx - z- x = 5

III.

Bài 1, Cho phương trình: x^2 -(m-1)*x-m^2+m-2=0
1, Tìm m để pt có nghiệm x=1
2, Giải pt khi m=2
Bài 2: Giải hệ 3*x+ 4*y =7 và 4*x- y=3

IV. Hai tổ học sinh cũng là một công việc thì sau 1 giờ 30 phút sẽ xong, nếu tổ 1 làm 20 phút và tổ 2 làm 15 phút được 1/5 công việc. Hỏi mỗi tổ làm riêng xong việc trong bao lâu?

4
12 tháng 6 2018

@Akai Haruma

12 tháng 6 2018

@Hắc Hường

12 tháng 3 2017

solution:

ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )

\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)

\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)

tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)

cả 2 vế các BĐT đều dương,cộng vế với vế:

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)

Áp dụng BĐT bunyakovsky ta có:

\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow S\ge x^2+y^2+z^2\)

đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)

dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1

*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)

\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)

13 tháng 3 2017

cái cách 2 là svac mà nhỉ

3 tháng 1 2020

Không hề có ý spam nha ! Mik ban đầu ko lm dc bài này đăng lên OLM nhờ giúp nhưng giờ lm dc rồi vs lại có 1 bạn nhờ mik nên mik làm ra nha :(

\(pt\left(1\right)\Leftrightarrow\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}=3\)

\(pt\left(2\right)\Leftrightarrow\left(z+\frac{y}{2}\right)^2-\frac{y^2}{4}=-1\Leftrightarrow3\left(z+\frac{y}{2}\right)^2-\frac{3y^2}{4}=-3\)

Cộng vế theo vế ta được:

\(\left(x-\frac{y}{2}\right)^2+3\left(z+\frac{y}{2}\right)^2=0\)

Dễ dàng suy ra \(2x=y;2z=-y\)

Thay vào \(pt\left(1\right)\) ta được:

\(x^2-x\cdot2x+4x^2=3\Rightarrow3x^2=3\Rightarrow x=1;x=-1\Rightarrow y=2;y=-2\Rightarrow z=-1;z=1\)

Vậy \(\left(x;y;z\right)\) thỏa mãn là \(\left(1;2;-1\right);\left(-1;-2;1\right)\)

6 tháng 2 2016

Cộng 3 vế của hệ pt lại được: \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=9\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\) x+y+z=3 hay x+y+z=-3

ở pt đầu => x(x+y+z)=2=> x= \(\frac{2}{x+y+z}\)mà x+y+z có 2 TH => x = \(\frac{2}{3}\)  hay x=\(\frac{-2}{3}\)

Tương tự với 2 pt còn lại, ta có 2 nghiệm :S= { \(\left(\frac{2}{3};1;\frac{4}{3}\right);\left(\frac{-2}{3};-1;\frac{-4}{3}\right)\)}

( Do vế phải của 3 pt đều dương và có \(x^2,y^2,z^2\)  đều dương => xy , yz và xz cũng dương => x, y, z phải cùng dấu )

3 tháng 9 2017

Áp dụng BĐT Bunhiacốpxki dạng phân thức : x²/a + y²/b ≥ (x+y)²/(a+b) 
Ta có : 
3/(xy+yz+zx) + 2/(x²+y²+z²) = 6/(2xy+2yz+2zx) + 2/(x²+y²+z²) 
≥ (√6+√2)²/(x+y+z)² = (√6+√2)² > 14 (đpcm). 

3 tháng 9 2017
Cách 2 : Ta đặt xy+yz+zx = t ( t>0 ) thì x²+y²+z² = (x+y+z)² - 2(xy+yz+zx) = 1-2t. Mặt khác ta lại có: 3(xy+yz+zx) ≤ (x+y+z)² = 1 ⇔ xy+yz+zx ≤ 1/3 hay t ≤ 1/3. Ta đưa bài toán về việc c/m: 3/t + 2/(1-2t) ≥ 14 với 0 < t ≤ 1/3. Biến đổi tương đương ta được : 3(1-2t) + 2t ≥ 14t(1-2t) ⇔ 28t² - 18t + 3 ≥ 0 ⇔ 3(1-3t)² + t² ≥ 0 (đúng). Tuy nhiên dấu "=" không xảy ra, do đó 3/(xy+yz+zx) + 2/(x²+y²+z²) > 14.