Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ hệ 1 ta có \(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}\)
từ hệ 2 ta có \(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}\)
cộng trừ 2 pt ta có \(\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\) và \(2\left(\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)
nhân 2 vế ta có \(\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}\right)^2-\left(\frac{1}{\sqrt[4]{y}}\right)^2\)
đến đây cậu tự giải nha
+Xét 2 riêng trường hợp x = 0 và y = 0.
+Xét x, y đều khác 0
Hệ \(\Leftrightarrow\int^{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}}_{\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}}\Leftrightarrow\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\text{ }\&\text{ }2.\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)
\(\Rightarrow\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\right)\left(\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\right)=\frac{4}{\sqrt{x}}-\frac{1}{\sqrt{y}}\)
Đặt \(\sqrt{y}=t.\sqrt{x}\text{ }\left(t>0\right)\)
Suy ra: \(\frac{2+t}{1+t^2}=4-\frac{1}{t}\Leftrightarrow\left(2t-1\right)\left(2t^2+1\right)=0\Leftrightarrow t=\frac{1}{2}\)
\(\Rightarrow\sqrt{x}=2\sqrt{y}\)
Thay vào phương trình đầu của hệ ban đầu:
\(\sqrt{2\sqrt{y}}\left(\frac{1}{4}+\frac{5\sqrt{y}}{5y}\right)=2\Leftrightarrow\frac{1}{4}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{2\sqrt{y}}}\)
\(\Leftrightarrow\frac{1}{4}+2t^2=2t\text{ với }t=\frac{1}{\sqrt{2\sqrt{y}}}\)
Tới đây dễ rồi.
chết người hả, đề gì mà trừu tượng ghê ghớm vậy
1/ ĐKXĐ: ...
\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)
\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)
Đặt \(\sqrt{x}=t\ge0\)
\(\Rightarrow2t^2+2015t-2016=0\)
Nghiệm xấu kinh khủng, bạn tự giải
2. ĐKXĐ: ...
\(x^2+4x+4+4y^2-8y+4=4xy+13\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)
Thay xuống dưới:
\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)
\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)
\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)
\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)
\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)
\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)