Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-3xy+x=2y-2y2
<=>x2-3xy+2y2=2y-x
<=>(x-2y)(x-y)=2y-x
<=>(x-2y)(x-y+1)=0
đến đây thay vào pt 2 là ra
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)
\(\Rightarrow3x^2-8xy+4y^2=0\)
\(\Rightarrow\left(3x-2y\right)\left(x-2y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{3}{2}x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu...
\(\left\{{}\begin{matrix}2x^2-3xy+y^2=3\\x^2+2xy-2y^2=6\end{matrix}\right.\)\(\left(1\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)
\(\Leftrightarrow3x^2-8xy+4y^2=0\)
\(\Leftrightarrow3x\left(x-2y\right)-2y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=\dfrac{2y}{3}\end{matrix}\right.\)
Thay vào \(\left(1\right)\) ta được:
\(\Leftrightarrow\left[{}\begin{matrix}2.\left(2y\right)^2-3.2y.y+y^2=3\\2.\left(\dfrac{2y}{3}\right)^2-3.\dfrac{2y}{3}.y+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2=1\\y^2=-27\left(VLý\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
\(y^3+3x^2y-3xy^2-2x^3=0\)
\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)
\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)
\(\Rightarrow y=2x\)
Thế xuống dưới:
\(x^4-2x^3-x^2+2x+1=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:
\(t^2-2t+1=0\Leftrightarrow t=1\)
\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
Mình theo olm từ hồi thi violympic toán tỉnh.... bây giờ cũng đã sắp thi cấp 3. thời gian trôi nhanh quá :(
Web này là 1 phần kỉ niệm của mình. Mình muốn góp một chút cho web. Chúc bạn thi tốt nhé !
ĐK: x>=1-2y, 1>=x>=-2
PT(2)=>\(\left(2y+x\right)\left(y^2-x-y\right)=0\) 0=>2y=-x hoặc y^2-y=x
Với 2y=-x thì vi phạm điều kiện xác định do x+2y-1=-2y+2y-1=-1
Với y^2-y=x=> \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}=y^2-y+2\)
\(ĐKXĐ:\frac{\sqrt{5}+1}{2}\ge y\ge\frac{\sqrt{5}-1}{2}\)
GIẢi pt này ra y=1 => 0=x (tm)
Nếu bạn chưa hiểu PT cuối thì đây là cách mình giải nó \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}\le\frac{1}{2}\left(2y+2\right)\left(am-gm\right)\)
\(=>VT\le y+1\le y^2-y+2\Leftrightarrow\left(y-1\right)^2\ge0\)
DB xảy ra khi y=1 (TMĐK)
\(\hept{\begin{cases}2x^2+3xy+2x+y=0\left(1\right)\\x^2+2xy+2y^2+3x=0\left(2\right)\end{cases}}\)
PT(1) - PT(2), ta được : \(x^2+xy-x+y-2y^2=0\Leftrightarrow\left(x^2-y^2\right)+\left(xy-x\right)-\left(y^2-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+x\left(y-1\right)-y\left(y-1\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)\left(y-1\right)=0\Leftrightarrow\left(x-y\right)\left(x+2y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-2y\end{cases}}\)
cứ thế mà giải , đến đây dễ rồi
\(\Leftrightarrow\left\{{}\begin{matrix}18x^3+9y^3=90\\10x^2y-30xy^2+10x^3=-90\end{matrix}\right.\)
\(\Rightarrow28x^3+10x^2y-30xy^2+9y^3=0\)
\(\Leftrightarrow\left(2x-y\right)\left(14x^2+12xy-9y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\frac{2+2\sqrt{3}}{3}x\\y=\frac{2-2\sqrt{3}}{3}x\end{matrix}\right.\) thế vào pt đầu:
\(\Rightarrow\left[{}\begin{matrix}2x^3+\left(2x\right)^3=10\\2x^3+\left(\frac{2+2\sqrt{3}}{3}\right)^3x^3=10\\2x^3+\left(\frac{2-2\sqrt{3}}{3}\right)^3x^3=10\end{matrix}\right.\)
Bạn tự giải nốt
Khi \(x=0\), hệ đã cho trở thành \(\left\{{}\begin{matrix}y^3=6\\0=-9\end{matrix}\right.\Rightarrow\) vô nghiệm
Xét \(x\ne0\) từ hệ phương trình đã cho ta có:
\(9\left(2x^3+y^3\right)=-10\left(x^2y-3xy^2+x^3\right)\)
\(\Leftrightarrow18x^3+9y^3=-10x^2y+30xy^2-10x^3\)
\(\Leftrightarrow18+9\left(\frac{y}{x}\right)^3=-10\frac{y}{x}+30\left(\frac{y}{x}\right)^2-10\)
Đặt \(t=\frac{y}{x}\) khi đó:
\(9t^3-30t^2+10t+28=0\)
\(\Leftrightarrow\left(t-2\right)\left(9t^2-12t-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=\frac{2\pm3\sqrt{2}}{3}\end{matrix}\right.\)
Ta có phương trình thứ nhất tương đương
\(2x^3+t^3x^3=10\Leftrightarrow x^3=\frac{10}{2+t^3}\Leftrightarrow x=\sqrt[3]{\frac{10}{2+t^3}}\)
Nếu \(t=2\Rightarrow x=\sqrt[3]{\frac{10}{2+t^3}}=1\Rightarrow y=2\)
Nếu \(t=\frac{2\pm3\sqrt{2}}{3}\Rightarrow x=\sqrt[3]{\frac{10}{2+\left(\frac{2\pm3\sqrt{2}}{3}\right)^3}}\Rightarrow y=\sqrt[3]{\frac{10.\left(\frac{2\pm3\sqrt{2}}{3}\right)^3}{2+\left(\frac{2\pm3\sqrt{2}}{3}\right)^3}}\)
Vậy hệ pt đã cho có ba nghiệm \(\left(x;y\right)\in\left\{\left(1;2\right);\left(\sqrt[3]{\frac{10}{2+\left(\frac{2\pm3\sqrt{2}}{3}\right)^3}};\sqrt[3]{\frac{10.\left(\frac{2\pm3\sqrt{2}}{3}\right)^3}{2+\left(\frac{2\pm3\sqrt{2}}{3}\right)^3}}\right)\right\}\)
Bài j ghê vậy em, xỉu!!