Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
Xét \(pt(2):\) \(\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\)
\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)-\left(4x-2y-3\right)^2\left(x+2y\right)=0\)
\(\Leftrightarrow-8x^3+12x^2y+12x^2+44xy^2+8xy-3x-24y^3-32y^2-11y-1=0\)
\(\Leftrightarrow-\left(x-3y-1\right)\left(8x^2+12xy-4x-8y^2-8y-1\right)=0\)
\(\Rightarrow x=3y+1\) thay vào \(pt(1)\) ta có
\(pt\left(1\right)\Leftrightarrow\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=1\Leftrightarrow x=4\\y=-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)
\(A=x^2+4y^2+x^2+\frac{1}{x}+\frac{1}{x}+12y^2+\frac{3}{2y}+\frac{3}{2y}\)
\(A\ge\frac{\left(x+2y\right)^2}{2}+3\sqrt[3]{\frac{x^2}{x^2}}+3\sqrt[3]{\frac{12y^2.3.3}{2y.2y}}\ge14\)
\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)
\(\int^{3x^2+2y^2-4xy+x+8y-4=0}_{x^2-y^2+2x+y-3=0}\) đề là vầy hả