Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
a) \(\left\{\begin{matrix}x^2=3x-y\left(1\right)\\y^2=3y-x\left(2\right)\end{matrix}\right.\)
Lấy (1) từ (2)\(x^2-y^2=3\left(x-y\right)+\left(x-y\right)=4\left(x-y\right)\Rightarrow\left\{\begin{matrix}x-y=0\left(4\right)\\x+y-4=0\left(5\right)\end{matrix}\right.\)
(4) thay x=y vào (1)\(\Leftrightarrow x^2=2x\Rightarrow\left\{\begin{matrix}x=0\\x=2\end{matrix}\right.\)(*)
(5) thay -y=x-4 vào(1)\(\Leftrightarrow x^2=3x+\left(x-4\right)\Leftrightarrow x^2-2x+4=0\) delta=1-4<0 vô nghiệm
Kết luận: hệ có nghiệm (x,y)=(0,0); (2,2)
b) tương tự câu (a) chú ý x^3-y^3=(x-y)(x^2+xy+y^2)
Bài 1:
Lấy PT $(1)$ trừ PT $(2)$ ta có:
\(x^2-y^2=3y-3x\)
\(\Leftrightarrow (x-y)(x+y)+3(x-y)=0\Leftrightarrow (x-y)(x+y+3)=0\)
$\Rightarrow x-y=0$ hoặc $x+y+3=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT $(1)$:
\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow (x-1)(x-2)=0\)
$\Rightarrow x=1$ hoặc $x=2$
Tương ứng ta thu được $y=1$ hoặc $y=2$
Nếu $x+y+3=0\Leftrightarrow y=-(x+3)$. Thay vào PT $(1)$:
\(x^2=-3(x+3)-2\Leftrightarrow x^2=-3x-11\Leftrightarrow x^2+3x+11=0\)
\(\Leftrightarrow (x+\frac{3}{2})^2=\frac{-35}{4}< 0\) (vô lý)
Vậy..........
Bài 2:
Lấy PT(1) trừ PT(2) ta có:
\(2x-2y+\frac{1}{y}-\frac{1}{x}=\frac{3}{x}-\frac{3}{y}\)
\(\Leftrightarrow 2(x-y)+(\frac{4}{y}-\frac{4}{x})=0\)
\(\Leftrightarrow (x-y)+\frac{2(x-y)}{xy}=0\)
\(\Leftrightarrow (x-y).\frac{2+xy}{xy}=0\Rightarrow \left[\begin{matrix} x=y\\ xy=-2\end{matrix}\right.\)
Nếu $x=y$. Thay vào PT (1) có:
\(2x+\frac{1}{x}=\frac{3}{x}\Leftrightarrow 2x-\frac{2}{x}=0\Leftrightarrow x^2-1=0\)
\(\Rightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1\) (tương ứng)
Nếu $xy=-2\Rightarrow \frac{1}{y}=\frac{-x}{2}$
Thay vào PT(1): $2x-\frac{x}{2}=\frac{3}{x}$
$\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}$
$\Rightarrow y=\mp \sqrt{2}$
Vậy........
\(y^3+3x^2y-3xy^2-2x^3=0\)
\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)
\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)
\(\Rightarrow y=2x\)
Thế xuống dưới:
\(x^4-2x^3-x^2+2x+1=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:
\(t^2-2t+1=0\Leftrightarrow t=1\)
\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)
1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)
2) 2 pt 3 ẩn không giải được.
3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)
Lời giải:
Trừ theo vế 2 pt trên ta có:
$x^3-y^3=5y-5x$
$\Leftrightarrow (x-y)(x^2+xy+y^2)+5(x-y)=0$
$\Leftrightarrow (x-y)(x^2+xy+y^2+5)=0$
Ta thấy: $x^2+xy+y^2+5=(x+\frac{y}{2})^2+\frac{3y^2}{4}+5\geq 5>0$ với mọi $x,y$
$\Rightarrow x-y=0$
$\Leftrightarrow x=y$.
Thay vào pt (1): $x^3=3x+8x=11x$
$\Leftrightarrow x(x^2-11)=0$
$\Leftrightarrow x\in\left\{0; \pm \sqrt{11}\right\}$
Vậy........