K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

a, \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b,\(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

c,\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

d,\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

21 tháng 1 2018

\(\left\{{}\begin{matrix}2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\\x^2+y^2=xy+3\left(\text{✳}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\\x^2+xy+y^2=2xy+3\end{matrix}\right.\)

\(\Rightarrow2x^3-9y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow2x^3-9y^3=x^3-y^3\)

\(\Leftrightarrow x^3=8y^3\)

\(\Leftrightarrow x=2y\text{. Thay vào }\left(\text{✳}\right)\)

\(\Rightarrow4y^2+y^2=2y^2+3\)

\(\Leftrightarrow3y^2=3\)

\(\Leftrightarrow y=\pm1\)

\(\Rightarrow x=\pm2\)

➩ Bạn tự kết luận nhé ^^

21 tháng 4 2023

\(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\3y^2+9y+2x^2-4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\9y^2+27y+6x^2-12x=0\end{matrix}\right.\)

\(\Rightarrow\left(y^3+9y^2+27y\right)-\left(x^3-6x^2+12x\right)=-35\)

\(\Rightarrow\left(y^3+9y^2+27y+27\right)-\left(x^3-6x^2+12x-8\right)=0\)

\(\Rightarrow\left(y+3\right)^3-\left(x-2\right)^2=0\)

\(\Rightarrow\left(y-x+5\right)\left[\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\right]=0\)

*Với \(x=y+5\). Thay vào (1) ta được:

\(2\left(y+5\right)^2+3y^2=4\left(y+5\right)-9y\)

\(\Leftrightarrow2y^2+20y+50+3y^2=4y+20-9y\)

\(\Leftrightarrow5y^2+25y+30=0\Leftrightarrow y^2+5y+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=-3\end{matrix}\right.\)

*\(y=-2\Rightarrow x=3\) ; \(y=-3\Rightarrow x=2\).

*Với \(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2=0\). Ta có:

\(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left[\left(y+3\right)+\dfrac{\left(x-2\right)}{2}\right]^2+\dfrac{3}{4}\left(x-2\right)^2\ge0\)

Dấu "=" xảy ra khi \(x=2;y=-3\)

Vậy \(x=2;y=-3\)

Thử lại ta có nghiệm (x;y) của hệ đã cho là \(\left(3;-2\right),\left(2;-3\right)\)

 

21 tháng 2 2018

\(x^3-12=y^3-12y\)

lại hệ đối xứng

8 tháng 3 2018

x + 1/2 trong khi y - 1/2 kìa.