K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

Từ PT \((1)\Rightarrow x^2+1=4y-y^2-xy=y(4-x-y)\)

Thay vào PT $(2)$ ta có:

\(y(4-x-y)(x+y-2)=y\)

\(\Leftrightarrow y[(4-x-y)(x+y-2)-1]=0\)

\(\Rightarrow \left[\begin{matrix} y=0(*)\\ (4-x-y)(x+y-2)=1(**)\end{matrix}\right.\)

Với \((*)\). Thay $y=0$ vào pt đầu tiên suy ra \(x^2+1=0\rightarrow x^2=-1\) (vô lý)

Với $(**)$. Đặt \(x+y=a\) thì:

\((4-a)(a-2)=1\)

\(\Leftrightarrow a^2-6a+9=0\Leftrightarrow (a-3)^2=0\Leftrightarrow a=3\)

\(\Rightarrow x^2+1=y(4-x-y)=y(4-3)=y\)

Thay \(y=3-x\) suy ra \(x^2+1=3-x\Rightarrow x^2+x-2=0\Rightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)

\(x=1\rightarrow y=2\)

\(x=-2\rightarrow y=5\)

Vậy.........

NV
25 tháng 5 2020

c/ \(y=0\) không phải nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y\left(x+y\right)=4y\\y\left(x+y\right)^2-2\left(x^2+1\right)=7y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\\frac{x^2+1}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\a^2-2b=7\end{matrix}\right.\) \(\Rightarrow a^2-2\left(4-a\right)=7\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\Rightarrow b=1\\a=-5\Rightarrow b=9\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=3\\\frac{x^2+1}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x^2+1-y=0\end{matrix}\right.\)

\(\Rightarrow x^2+1-\left(3-x\right)=0\Rightarrow...\)

TH2: làm tương tự

NV
25 tháng 5 2020

a/ \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)

Do \(x=y;x=-y\) đều ko phải nghiệm

\(\Rightarrow\frac{x^2+y^2}{\left(x+y\right)^2}=\frac{13}{25}\Leftrightarrow25\left(x^2+y^2\right)=13\left(x+y\right)^2\)

\(\Leftrightarrow12x^2-26xy+12y^2=0\)

\(\Leftrightarrow\left(2x-3y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=\frac{2}{3}x\\y=\frac{3}{2}x\end{matrix}\right.\)

Thay vào 1 trong 2 pt ban đầu là xong

b/ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\y\ge0\end{matrix}\right.\) \(\Rightarrow x+y>0\)

\(xy+x+y+y^2=x^2-y^2\)

\(\Leftrightarrow x\left(y+1\right)+y\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left(y+1\right)=\left(x+y\right)\left(x-y\right)\)

\(\Leftrightarrow y+1=x-y\Rightarrow x=2y+1\)

Thay vào pt dưới:

\(\left(2y+1\right)\sqrt{2y}+y\sqrt{2y}=2\left(y+1\right)\)

\(\Leftrightarrow\sqrt{2y}\left(3y+1\right)=2\left(y+1\right)\)

\(\Leftrightarrow y\left(9y^2+6y+1\right)=2\left(y^2+2y+1\right)\)

\(\Leftrightarrow9y^3+2y^2-3y-2=0\)

Nghiệm quá xấu, bạn coi lại đề

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

13 tháng 10 2020

\(HPT\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+1\right)+y\left(x+y-4\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+1\right)+\left(x^2+1\right)\left(x+y-2\right)\left(x+y-4\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y-3\right)^2\left(x^2+1\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\x^2+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x^2+x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1;y=2\\x=-2;y=5\end{matrix}\right.\)

a. \(\left\{\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(y-2\right)\left(x-1\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y-2=0\\x-1=0\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y=2\\x=1\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}y=2\\3x+y=8\end{matrix}\right.\\\left\{\begin{matrix}x=1\\3x+y=8\end{matrix}\right.\end{matrix}\right.\)

Giải hệ phương trình ta được:

\(\left[\begin{matrix}\left\{\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{\begin{matrix}x=1\\y=5\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình đã cho có tập nghiệm \(S=\left\{\left(2;2\right),\left(1;5\right)\right\}\)

23 tháng 2 2017

b)\(\text{HPT}\Leftrightarrow \)\(\left\{\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}a^2-4a=12\\b^2-2b=3\end{matrix}\right.\)\(\left(\left\{\begin{matrix}a=x+y\\b=x-y\end{matrix}\right.\right)\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}a=-2\\a=6\end{matrix}\right.\\\left[\begin{matrix}b=3\\b=-1\end{matrix}\right.\end{matrix}\right.\) Thay vào ...

11 tháng 7 2018

Câu hỏi của Cậu bé nhỏ nhắn - Toán lớp 9 | Học trực tuyến

12 tháng 7 2018

thank you very much!!!!!ngaingungngaingunghihihihi

NV
12 tháng 8 2020

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+1\right)+\left(2y^2-2xy+8y\right)=0\\y\left[7-\left(x-y\right)^2\right]=2\left(x^2+1\right)\end{matrix}\right.\)

\(\Rightarrow y\left[7-\left(x-y\right)^2\right]+2y^2-2xy+8y=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\left(ktm\right)\\7-\left(x-y\right)^2+2y-2x+8=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-\left(x-y\right)^2-2\left(x-y\right)+15=0\)

Đặt \(x-y=t\Rightarrow-t^2-2t+15=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y+3\\x=y-5\end{matrix}\right.\)

Thế vào pt đầu: ....

AH
Akai Haruma
Giáo viên
21 tháng 3 2018

Lời giải:

\(\left\{\begin{matrix} x^2+y^2+xy+1=4y\\ (x^2+1)(x+y-2)=y\end{matrix}\right.\)

Lấy PT thứ hai trừ phương trình thứ nhất thu được:

\((x^2+1)(x+y-2)-[(x^2+1)+y^2+xy]=y-4y\)

\(\Leftrightarrow (x^2+1)(x+y-3)=y^2+xy-3y\)

\(\Leftrightarrow (x^2+1)(x+y-3)=y(x+y-3)\)

\(\Leftrightarrow (x^2+1-y)(x+y-3)=0\)

Đến đây ta xét các TH:

TH1: \(x^2+1-y=0\Leftrightarrow x^2+1=y\)

Thay vào PT(2) \(y(x+y-2)=y\Leftrightarrow y(x+y-3)=0\)

Vì \(y=x^2+1\geq 1\neq 0\Rightarrow x+y-3=0\)

\(\Leftrightarrow y=3-x\)

\(\Leftrightarrow x^2+1=3-x\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\)

\(\Leftrightarrow \left[\begin{matrix} x=1\rightarrow y=2\\ x=-2\rightarrow y=5\end{matrix}\right.\)

TH2: \(x+y-3=0\). Lặp lại giống TH1 ta thu được kết quả như trên

Vậy \((x,y)\in \left\{1,2); (-2,5)\right\}\)