Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ \(y=0\) không phải nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y\left(x+y\right)=4y\\y\left(x+y\right)^2-2\left(x^2+1\right)=7y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\\frac{x^2+1}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\a^2-2b=7\end{matrix}\right.\) \(\Rightarrow a^2-2\left(4-a\right)=7\)
\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\Rightarrow b=1\\a=-5\Rightarrow b=9\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=3\\\frac{x^2+1}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x^2+1-y=0\end{matrix}\right.\)
\(\Rightarrow x^2+1-\left(3-x\right)=0\Rightarrow...\)
TH2: làm tương tự
a/ \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)
Do \(x=y;x=-y\) đều ko phải nghiệm
\(\Rightarrow\frac{x^2+y^2}{\left(x+y\right)^2}=\frac{13}{25}\Leftrightarrow25\left(x^2+y^2\right)=13\left(x+y\right)^2\)
\(\Leftrightarrow12x^2-26xy+12y^2=0\)
\(\Leftrightarrow\left(2x-3y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=\frac{2}{3}x\\y=\frac{3}{2}x\end{matrix}\right.\)
Thay vào 1 trong 2 pt ban đầu là xong
b/ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\y\ge0\end{matrix}\right.\) \(\Rightarrow x+y>0\)
\(xy+x+y+y^2=x^2-y^2\)
\(\Leftrightarrow x\left(y+1\right)+y\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(y+1\right)=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow y+1=x-y\Rightarrow x=2y+1\)
Thay vào pt dưới:
\(\left(2y+1\right)\sqrt{2y}+y\sqrt{2y}=2\left(y+1\right)\)
\(\Leftrightarrow\sqrt{2y}\left(3y+1\right)=2\left(y+1\right)\)
\(\Leftrightarrow y\left(9y^2+6y+1\right)=2\left(y^2+2y+1\right)\)
\(\Leftrightarrow9y^3+2y^2-3y-2=0\)
Nghiệm quá xấu, bạn coi lại đề
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+1\right)+y\left(x+y-4\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+1\right)+\left(x^2+1\right)\left(x+y-2\right)\left(x+y-4\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y-3\right)^2\left(x^2+1\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\x^2+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x^2+x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1;y=2\\x=-2;y=5\end{matrix}\right.\)
a. \(\left\{\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left(y-2\right)\left(x-1\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y-2=0\\x-1=0\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y=2\\x=1\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}y=2\\3x+y=8\end{matrix}\right.\\\left\{\begin{matrix}x=1\\3x+y=8\end{matrix}\right.\end{matrix}\right.\)
Giải hệ phương trình ta được:
\(\left[\begin{matrix}\left\{\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{\begin{matrix}x=1\\y=5\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình đã cho có tập nghiệm \(S=\left\{\left(2;2\right),\left(1;5\right)\right\}\)
b)\(\text{HPT}\Leftrightarrow \)\(\left\{\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}a^2-4a=12\\b^2-2b=3\end{matrix}\right.\)\(\left(\left\{\begin{matrix}a=x+y\\b=x-y\end{matrix}\right.\right)\)
\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}a=-2\\a=6\end{matrix}\right.\\\left[\begin{matrix}b=3\\b=-1\end{matrix}\right.\end{matrix}\right.\) Thay vào ...
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+1\right)+\left(2y^2-2xy+8y\right)=0\\y\left[7-\left(x-y\right)^2\right]=2\left(x^2+1\right)\end{matrix}\right.\)
\(\Rightarrow y\left[7-\left(x-y\right)^2\right]+2y^2-2xy+8y=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\left(ktm\right)\\7-\left(x-y\right)^2+2y-2x+8=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-\left(x-y\right)^2-2\left(x-y\right)+15=0\)
Đặt \(x-y=t\Rightarrow-t^2-2t+15=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y+3\\x=y-5\end{matrix}\right.\)
Thế vào pt đầu: ....
Lời giải:
\(\left\{\begin{matrix} x^2+y^2+xy+1=4y\\ (x^2+1)(x+y-2)=y\end{matrix}\right.\)
Lấy PT thứ hai trừ phương trình thứ nhất thu được:
\((x^2+1)(x+y-2)-[(x^2+1)+y^2+xy]=y-4y\)
\(\Leftrightarrow (x^2+1)(x+y-3)=y^2+xy-3y\)
\(\Leftrightarrow (x^2+1)(x+y-3)=y(x+y-3)\)
\(\Leftrightarrow (x^2+1-y)(x+y-3)=0\)
Đến đây ta xét các TH:
TH1: \(x^2+1-y=0\Leftrightarrow x^2+1=y\)
Thay vào PT(2) \(y(x+y-2)=y\Leftrightarrow y(x+y-3)=0\)
Vì \(y=x^2+1\geq 1\neq 0\Rightarrow x+y-3=0\)
\(\Leftrightarrow y=3-x\)
\(\Leftrightarrow x^2+1=3-x\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=1\rightarrow y=2\\ x=-2\rightarrow y=5\end{matrix}\right.\)
TH2: \(x+y-3=0\). Lặp lại giống TH1 ta thu được kết quả như trên
Vậy \((x,y)\in \left\{1,2); (-2,5)\right\}\)
Lời giải:
Từ PT \((1)\Rightarrow x^2+1=4y-y^2-xy=y(4-x-y)\)
Thay vào PT $(2)$ ta có:
\(y(4-x-y)(x+y-2)=y\)
\(\Leftrightarrow y[(4-x-y)(x+y-2)-1]=0\)
\(\Rightarrow \left[\begin{matrix} y=0(*)\\ (4-x-y)(x+y-2)=1(**)\end{matrix}\right.\)
Với \((*)\). Thay $y=0$ vào pt đầu tiên suy ra \(x^2+1=0\rightarrow x^2=-1\) (vô lý)
Với $(**)$. Đặt \(x+y=a\) thì:
\((4-a)(a-2)=1\)
\(\Leftrightarrow a^2-6a+9=0\Leftrightarrow (a-3)^2=0\Leftrightarrow a=3\)
\(\Rightarrow x^2+1=y(4-x-y)=y(4-3)=y\)
Thay \(y=3-x\) suy ra \(x^2+1=3-x\Rightarrow x^2+x-2=0\Rightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)
\(x=1\rightarrow y=2\)
\(x=-2\rightarrow y=5\)
Vậy.........