Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng 2 phương trình lại
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)
điều kiện: 0=<x =< 32
hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)
theo bất đẳng thức Bunhiacopsky ta có:
\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)
\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)
\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)
\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)
mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
đẳng thức xảy ra khi x=16 và y=3 (tm)
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(pt\left(1\right)\Leftrightarrow\left(x-y+2\right)\left(x^2+xy+y^2-2x-4y-8\right)=0\)
giải hệ phương trình
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=2\\\sqrt{x+3}+\sqrt{y+3}=4\end{cases}}\)
\(pt< =>\hept{\begin{cases}x+y+2\sqrt{xy}=4\\x+y+6+2\sqrt{\left(x+3\right)\left(y+3\right)}=16\end{cases}}\)
<=>\(\hept{\begin{cases}x+y=4-2\sqrt{xy}\\x+y=10-2\sqrt{\left(x+3\right)\left(y+3\right)}\end{cases}}\)
=> \(4-2\sqrt{xy}=10-2\sqrt{\left(x+3\right)\left(y+3\right)}\)
<=>\(-2\sqrt{xy}=6-2\sqrt{\left(x+3\right)\left(y+3\right)}\)
<=> \(\sqrt{\left(x+3\right)\left(y+3\right)}=\sqrt{xy}+3\)
Bình phương hai vế, tự làm nốt
Lấy tổng, tích ta được:
\(\hept{\begin{cases}\sqrt{x+3}-\sqrt{x}+\sqrt{y+3}-\sqrt{y}=2\\\sqrt{x+3}+\sqrt{y}+\sqrt{y+3}+\sqrt{y}=6\end{cases}}\)Đặt \(\hept{\begin{cases}\sqrt{x+3}+\sqrt{x}=a\left(a>0\right)\\\sqrt{y+3}+\sqrt{y}=b\left(b>0\right)\end{cases}}\)và chú ý rằng \(\hept{\begin{cases}\sqrt{x+3}-\sqrt{x}=\frac{3}{a}\\\sqrt{y+3}-\sqrt{y}=\frac{3}{b}\end{cases}}\)
=>\(\hept{\begin{cases}a+b=6\\\frac{3}{a}+\frac{3}{b}=2\ge\frac{3.4}{a+b}=2\end{cases}}\)(theo Cauchy scharws)
Dấu bằng khi a=b=3
<=>x=y=1