K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

\(\hept{\begin{cases}2x=\sqrt{y+3}\left(1\right)\\2y=\sqrt{z+3}\left(2\right)\\2z=\sqrt{x+3}\left(3\right)\end{cases}}\)(*)

Do \(\hept{\begin{cases}\sqrt{y+3}\ge0\\\sqrt{z+3}\ge0\\\sqrt{x+3}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge0\\2y\ge0\\2z\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}}\)

Do 2 vế của các phương trình (1)(2)(3) không âm, bình phương 2 vế của mỗi phương trình ta được hệ phương trình:

\(\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=z+3\\\left(2z\right)^2=x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2=x+y+z+9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2-x-y-z-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left[\left(2x\right)^2-2.2x.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2z\right)^2-2.2z.\frac{1}{4}+\frac{1}{16}\right]+\frac{141}{16}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}=0\left(4\right)\end{cases}}\)

Do \(\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}>0\)

nên phương trình (4) vô nghiệm

=> Phương trình (*) vô nghiệm

8 tháng 4 2018

bạn trên giải sai rồi 

1 tháng 3 2020

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

24 tháng 5 2019

tôi mới lớp5

24 tháng 5 2019

i am 11 years old,do you know

10 tháng 5 2017

2)

sử dụng phương pháp nhân liên hợp ở pt (1) ta được

\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)

cộng 2 vế lại được x=-y

rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu

11 tháng 5 2017

2,RA DUOC X=-Y ...THAY VAO PT 2 TA DC Y^2+Z^2 -4Y-4Z +4+4=0...(Y-2)^2 +(Z-2)^2=0...Y=Z=2 , X=-Y=-2

4 tháng 7 2017

a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0

=>x=y=z thay vào pt 2 ta dc x=y=z=3

c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0

Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)

=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...

d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)

\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)

 <=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)

<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)

=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x

b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y

\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)

\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)

Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1 

=> hệ pt vô nghiệm 

\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)