Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+xy+y^2=19(1)
x-xy+y=-1(2) =>x=xy-1-y(4)
Cộng (1) cho (2) ta dc x^2+y^2+x+y=18(3)
thay (4) vào (3) ta dc (xy-1-y)^2+y^2+(xy-1-y)+y=18(5)
b) \(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\\left(x+1\right)^2+3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+1\right)^2-6y=6\left(1\right)\\2\left(x-1\right)^2+6y=2\left(2\right)\end{matrix}\right.\)
Cộng theo vế 2 pt trên, ta có
\(3\left(x+1\right)^2+2\left(x-1\right)^2=8\)
\(\Leftrightarrow5x^2+2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-1\end{matrix}\right.\)
Từ đó dễ dàng tìm được y.
a) \(\left\{{}\begin{matrix}\left(x+y\right)^2=50\left(1\right)\\x+5\left(y-1\right)=xy\left(2\right)\end{matrix}\right.\)
Ta viết lại pt (2)
\(x+5\left(y-1\right)=xy\)
\(\Leftrightarrow\left(x-xy\right)+5\left(y-1\right)=0\)
\(\Leftrightarrow x\left(1-y\right)-5\left(1-y\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
- TH1: Thay x = 5 vào pt (1) tìm được \(\left[{}\begin{matrix}y=-5+5\sqrt{2}\\y=-5-5\sqrt{2}\end{matrix}\right.\)
- TH2: Thay y = 1 vào pt (1) tìm được \(\left[{}\begin{matrix}x=-1+5\sqrt{2}\\x=-1-5\sqrt{2}\end{matrix}\right.\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
Xét pt thứ 2 ta có
\(xy+\frac{1}{xy}=\frac{5}{2}\)
\(\Leftrightarrow2x^2y^2-5xy+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}xy=2\\xy=\frac{1}{2}\end{cases}}\)
Xét pt 1 ta có
\(x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\)
\(\Leftrightarrow2\left(x+y\right)+\frac{2\left(x+y\right)}{xy}=9\left(3\right)\)
Thế xy = 2 vào (3) ta được
\(\hept{\begin{cases}3\left(x+y\right)-9=0\\xy=2\end{cases}}\)
\(\Rightarrow\left(x,y\right)=\left(1,2;2,1\right)\)
Thế xy = \(\frac{1}{2}\)vào (3) ta được
\(\hept{\begin{cases}6\left(x+y\right)-9=0\\xy=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\left(x,y\right)=\left(1,\frac{1}{2};\frac{1}{2},1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3y+2x^2y^2+xy^3+x^3y^2+x^2y^3=30\\x^2y+xy^2+xy+x+y=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x^2+2xy+y^2\right)+x^2y^2\left(x+y\right)=30\\xy\left(x+y\right)+\left(xy+x+y\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)^2+x^2y^2\left(x+y\right)=30\\xy\left(x+y\right)+\left(xy+x+y\right)=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+\left(xy+x+y\right)=11\end{matrix}\right.\)
Theo Viet đảo, \(xy\left(x+y\right)\) và \(xy+x+y\) là nghiệm của:
\(t^2-11t+30=0\Rightarrow\left[{}\begin{matrix}t=6\\t=5\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo, \(xy\) và \(x+y\) là nghiệm của: \(u^2-5u+6=0\Rightarrow\left[{}\begin{matrix}u=2\\u=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) ..........
Biến đổi pt dưới:
\(x^2-4x+4+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)
Thay vào pt đầu giải bt
a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)
Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:
\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp
ra \(x=8;y=-8\)