Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}-2=-1\\\dfrac{4}{x}+\dfrac{3}{y}-2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a-b-2=-1\\4a+3b-2=5\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{10}{7}\\b=\dfrac{3}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{10}{7}\Rightarrow x=\dfrac{7}{10}\\\dfrac{1}{y}=\dfrac{3}{7}\Rightarrow y=\dfrac{7}{3}\end{matrix}\right.\)
\(b.\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{5}{\left(x+y\right)}=2\\\dfrac{3}{x}+\dfrac{1}{\left(x+y\right)}=\dfrac{17}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a+5b=2\\3a+b=\dfrac{17}{10}\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{x+y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\\\dfrac{1}{x+y}=\dfrac{1}{5}\Rightarrow y=3\end{matrix}\right.\)
\(c.\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{y+1}=7\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=7\\5a-2b=4\end{matrix}\right.\) (với \(\dfrac{1}{x-1}=a-\dfrac{1}{y+1}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=2\Rightarrow x=\dfrac{3}{2}\\\dfrac{1}{y+1}=3\Rightarrow y=-\dfrac{2}{3}\end{matrix}\right.\)
\(d.\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-1}}=1\\\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{y-1}}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\) (với \(\dfrac{1}{\sqrt{x-1}}=a-\dfrac{1}{\sqrt{y-1}}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}=1\Rightarrow x=2\\\dfrac{1}{\sqrt{y-1}}=1\Rightarrow y=2\end{matrix}\right.\)
e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2\left(x-2\right)+3\left(1+y\right)=2\\3\left(x-2\right)-2\left(1+y\right)=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6\left(x-2\right)+9\left(1+y\right)=6\\6\left(x-2\right)-4\left(1+y\right)=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13\left(1+y\right)=12\\2\left(x-2\right)+3\left(1+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21}{13}\\y=-\dfrac{1}{13}\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-7y=-12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-x-7y=-12\\21x-7y=112\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}22x=124\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
Ta có hệ \(\hept{\begin{cases}\left(4x^2+1\right)x+\left(y-3\right)\sqrt{5-2y}=0\left(1\right)\\4x^2+y^2+2\sqrt{3-4x}=7\left(2\right)\end{cases}}\)
ĐK \(\hept{\begin{cases}y\ge\frac{5}{2}\\x\le\frac{3}{4}\end{cases}}\)
Đặt \(\hept{\begin{cases}2x=a\\\sqrt{5-2y}=b\ge0\end{cases}\Rightarrow\hept{\begin{cases}4x^2=a^2\\5-2y=b^2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}4x^2=a^2\\y-3=\frac{5-b^2}{2}-3=\frac{-1-b^2}{2}\end{cases}}\)
Thế vào (1) ta có \(\left(a^2+1\right)\frac{a}{2}+\frac{-1-b^2}{2}b=0\)
\(\Leftrightarrow\frac{a^3+a}{2}+\frac{-b^3-b}{2}=0\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)vì \(a^2+ab+b^2+1>0\forall a,b\)
\(\Rightarrow2x=\sqrt{5-2y}\Rightarrow4x^2=5-2y\Rightarrow y=\frac{5-4x^2}{2}\)
Thế y vào (2) ta có \(4x^2+\left(\frac{5-4x^2}{2}\right)^2+2.\sqrt{3-4x}=7\)
\(\Leftrightarrow16x^2+\left(5-4x^2\right)^2+8\sqrt{3-4x}=28\)\(\Leftrightarrow16x^2+25-40x^2+16x^4+8\sqrt{3-4x}-28=0\)
\(\Leftrightarrow16x^4-24x^2+8\sqrt{3-4x}-3=0\)
\(\Leftrightarrow\left(16x^4-1\right)-\left(24x^2-6\right)+\left(8\sqrt{3-4x}-8\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+\left(8\sqrt{3-4x}-8\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+8.\frac{2-4x}{\sqrt{3-4x}+1}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)\left(4x^2+1\right)-6\left(2x+1\right)\left(2x-1\right)-8.2.\frac{2x-1}{\sqrt{3-4x}+1}=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2+1\right)-6\left(2x+1\right)-\frac{16.1}{\sqrt{3-4x}+1}\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}\right]=0\)
\(\Leftrightarrow2x-1=0\)
Vì với \(y=\frac{5-4x^2}{2}\ge\frac{5}{2}\Rightarrow4x^2-5< 0\Rightarrow\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}< 0\)
\(\Leftrightarrow x=\frac{1}{2}\Rightarrow y=\frac{5-4\left(\frac{1}{2}\right)^2}{2}=2\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(\frac{1}{2};2\right)\)