Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(x^2-3y^2+2xy-x+5y-2=0\)
\(\Leftrightarrow\left(x^2+3xy-2x\right)+\left(-3y^2-xy+2y\right)+x+3y-2=0\)
\(\Leftrightarrow x\left(x+3y-2\right)-y\left(x+3y-2\right)+x+3y-2=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y-1\\x=2-3y\end{matrix}\right.\)
Thay lên pt đầu: \(\left[{}\begin{matrix}\left(y-1\right)^2+y^2+y-1+y=8\\\left(2-3y\right)^2+y^2+2-3y+y=8\end{matrix}\right.\)
Bạn tự giải nốt
b.
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=9-2xy\\4x+6y=20-2xy\end{matrix}\right.\)
\(\Rightarrow x+y=11\Rightarrow y=11-x\)
Thay vào pt đầu:
\(3x+5\left(11-x\right)=9-2x\left(11-x\right)\)
Bạn tự giải nốt
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)
=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64
=>3x+2y=94 và 2x+2y=68
=>x=26 và x+y=34
=>x=26 và y=8
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)
=>x+1=18/35; y+4=9/13
=>x=-17/35; y=-43/18
\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\left(1\right)\\x^2-3y^2+2xy-x+5y=0\left(2\right)\end{matrix}\right.\)
Phương trình (2) <=> \(x^2+x\cdot\left(2y-1\right)-3y-3y^2+5y-2=0\)
Coi phương trình là phương trình bậc 2 ẩn x
Ta có : \(\Delta=\left(2y-1\right)^2-4\left(-3y^2+5y-2\right)=\left(4y-3\right)^2\ge0\)
=> Phương trình có 2 nghiệm :
\(\left[{}\begin{matrix}x=-3y+2\\x=y-1\end{matrix}\right.\)
+) x = -3y + 2
Thay vào (1) ta được :
\(\left(2-3y\right)^2+y^2+2-3y+y=8\)
\(5y^2-7y-1=0\)
\(\Delta=69>0\)
=> Phương trình 2 nghiệm
\(\left[{}\begin{matrix}y=\dfrac{7+\sqrt{69}}{10}\\y=\dfrac{7-\sqrt{69}}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1+3\sqrt{69}}{10}\\x=\dfrac{3\sqrt{69}-1}{10}\end{matrix}\right.\)
+) x = y - 1
Thay vào (1) , ta được :
\(\left(y-1\right)^2+y^2+y-1+y=8\)
\(2y^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy ....