Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai
Đề sai
Đề sai
Đề sai
Đề sai
Đề sai
Đề sai
Đề sai
Đề sai
Đề sai
a/\(\left\{{}\begin{matrix}\sqrt{5}-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x-3\sqrt{5}=15\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
\(\Leftrightarrow15x+2\sqrt{3}x=15\left(\sqrt{3}-1\right)+21=15\sqrt{3}+6\)
\(\Leftrightarrow x=\frac{15\sqrt{3}+6}{15+2\sqrt{3}}=\sqrt{3}\)
\(\Rightarrow y=\sqrt{5}\)
Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=\sqrt{3}\\y=\sqrt{5}\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}7x=4y\\x-y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x-4y=0\\7x-7y+21=0\end{matrix}\right.\)
\(\Leftrightarrow\left(7x-4y\right)-\left(7x-7y+21\right)=0\)
\(\Leftrightarrow3x-21=0\Leftrightarrow x=7\)
\(\Rightarrow y=4\)
Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=7\\y=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4\left(5+3y\right)+5y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}20+12y+5y=3\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20+17y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.
a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)
Cộng 2 pt ta đc: x=1
Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)
Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)
Những câu sau làm ttự.
#Walker
ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?
1/PT (1) cho ta nhân tử x - y - 1:)
\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)
ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)
PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)
Dễ thấy cái ngoặc to < 0
Do đó x= y + 1
Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)
ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)
PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)
\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)
Cái ngoặc to > 0 =>...
P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(
2/ĐK: \(x\ge-y;y\ge0\)
PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)
Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).
Do đó x = y \(\ge0\)
Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)
Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)
Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)
P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((
\(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\left(1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\left(2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\left(\sqrt{5}x-\sqrt{15}+\sqrt{5}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\x\left(15+2\sqrt{3}\right)=6+15\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}\\y=\sqrt{5}\end{matrix}\right.\)
ít nhất phải đánh ra thế này chớ ( thiếu kết luận bước cuối giải hệ phương trình trừ điểm : ))