Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)