Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2x+5y=11(1)`
`2x-3y=0(2)`
Lấy (1) trừ (2)
`=>8y=11`
`<=>y=11/8`
`<=>x=(3y)/2=33/16`
a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)
\(a,\left\{{}\begin{matrix}2x-y=1\\3x+2y=5\end{matrix}\right.\\ =>\left\{{}\begin{matrix}4x-2y=2\\3x+2y=5\end{matrix}\right.\\ =>\left\{{}\begin{matrix}7x=7\\2x-y=1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=1\\2.1-y=1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;1\right)\)
\(b,\left\{{}\begin{matrix}4x+3y=-1\\3x-2y=2\end{matrix}\right.\\ =>\left\{{}\begin{matrix}4.2x+3.2y=-1.2\\3.3x-2.3y=2.3\end{matrix}\right.\\ =>\left\{{}\begin{matrix}8x+6y=-2\\9x-6y=6\end{matrix}\right.\\ =>\left\{{}\begin{matrix}17x=4\\3x-2y=2\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=\dfrac{4}{17}\\y=-\dfrac{11}{17}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\dfrac{4}{17};-\dfrac{11}{17}\right)\)
\(\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{4}{11}\\\dfrac{2x+y}{xy}=\dfrac{4}{5}\end{matrix}\right.\)(x,y\(\ne0\))<=>\(\left\{{}\begin{matrix}\dfrac{4}{y}+\dfrac{3}{x}=\dfrac{4}{11}\\\dfrac{2}{y}+\dfrac{1}{x}=\dfrac{4}{5}\end{matrix}\right.\)
đặt \(\dfrac{1}{x}=a\)
\(\dfrac{1}{y}=b\)
=>\(\left\{{}\begin{matrix}3a+4b=\dfrac{4}{11}\\a+2b=\dfrac{4}{5}\end{matrix}\right.< =>\left\{{}\begin{matrix}3a+4b=\dfrac{4}{11}\\3a+6b=\dfrac{12}{5}\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}-2b=-\dfrac{112}{55}\\a+2b=\dfrac{4}{5}\end{matrix}\right.< =>\left\{{}\begin{matrix}b=\dfrac{56}{55}\\a=\dfrac{-68}{55}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=a=-\dfrac{68}{55}\\\dfrac{1}{y}=b=\dfrac{56}{55}\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{-55}{68}\left(TM\right)\\y=\dfrac{55}{56}\left(TM\right)\end{matrix}\right.\)
vậy...
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
\(\hept{\begin{cases}2x+3y=4\\4x-2y=5\end{cases}}\)
<=> \(\hept{\begin{cases}4x+6y=8\\4x-2y=5\end{cases}}\)
<=>\(\hept{\begin{cases}8y=3\\2x+3y=4\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\2x+\frac{9}{8}=4\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\2x=\frac{23}{8}\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\x=\frac{23}{16}\end{cases}}\)
Vậy hệ phương trình có nghiệm (x;y) là \(\left(\frac{23}{16};\frac{3}{8}\right)\)
x=\(1\frac{3}{10}\);y=\(1\frac{2}{5}\)
(1)=>2x=4-IyI
thay vô (2) ta dc (4-IyI)*2-3y=1
ta có 2 trường hợp