K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

nhân lượng liên hợp vào

11 tháng 7 2018

Nguyễn Tấn An: là như vầy nè bạn, mấy cái sau làm tương tự nhé ^^!\(\dfrac{1}{\sqrt{1}-\sqrt{2}}=\dfrac{1\cdot\left(\sqrt{1}+\sqrt{2}\right)}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}=\dfrac{\sqrt{1}+\sqrt{2}}{-1}=-\sqrt{1}-\sqrt{2}\)

24 tháng 10 2017

\(S=\sum\limits^{121}_2\left(\dfrac{1}{x\sqrt{\left(x-1\right)}+\left(x-1\right)\sqrt{x}}\right)\)

\(S=0,9090909091\)

24 tháng 10 2017

Sao mình thấy nó kì kì

16 tháng 10 2018

Xét số hạng tổng quát:\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow A=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}-\dfrac{1}{\sqrt{121}}\)

\(A=1-\dfrac{1}{11}=\dfrac{10}{11}\)

12 tháng 6 2017

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)

\(=\sqrt{121}-\sqrt{1}=11-1=10\)

Lại có: \(\dfrac{1}{\sqrt{k}}=\dfrac{2}{2\sqrt{k}}>\dfrac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)

\(\Leftrightarrow\dfrac{1}{\sqrt{k}}>\dfrac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

Áp dụng đánh giá trên vào B ta có:

\(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)

\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10\)

Suy ra \(A=10< B\Rightarrow A< B\)

13 tháng 6 2017

_cm ơn nhưng mk lm ra r :v =))

Tổng quát:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow S=\dfrac{10}{11}\)

 

15 tháng 7 2023

Ta có công thức tổng quát như sau:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)

\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)

Áp dụng vào tổng S ta có:

\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)

\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)

\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)

AH
Akai Haruma
Giáo viên
21 tháng 6 2018

Lời giải:

Ta có;

\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{120}+\sqrt{121}}\)

\(A=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{121}-\sqrt{120}}{(\sqrt{120}+\sqrt{121})(\sqrt{121}-\sqrt{120})}\)

\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)

\(A=\sqrt{121}-\sqrt{1}=10\)

Mặt khác:

\(\frac{B}{2}=\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{35}}\)

\(>\frac{1}{2}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\)

\(\Leftrightarrow \frac{B}{2}>\frac{1}{2}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}+...+\frac{\sqrt{36}-\sqrt{35}}{(\sqrt{36}-\sqrt{35})(\sqrt{36}+\sqrt{35})}\)

\(\Leftrightarrow \frac{B}{2}>\frac{1}{2}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\)

\(\Leftrightarrow \frac{B}{2}>\frac{1}{2}+\sqrt{36}-\sqrt{2}>5\Rightarrow B>10\Rightarrow B>A\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 6 2018

Mấu chốt là bạn nhìn ra \((\sqrt{n+1}-\sqrt{n})(\sqrt{n}+\sqrt{n+1})=(n+1)-n=1\) để thực hiện liên hợp

9 tháng 10 2018

ta có : \(\dfrac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}=\dfrac{\left(2n+\sqrt{n^2-1}\right)\left(\sqrt{n-1}+\sqrt{n+1}\right)}{-2}\)

\(=\dfrac{2n\sqrt{n-1}+2n\sqrt{n+1}+\left(n-1\right)\sqrt{n+1}+\left(n+1\right)\sqrt{n-1}}{-2}\) \(=\dfrac{\sqrt{n-1}\left(3n+1\right)+\sqrt{n+1}\left(3n-1\right)}{-2}\)

chung mẫu hết rồi cộng lại

9 tháng 10 2018

lm lại nha :

ta có : \(\dfrac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}\) \(=\dfrac{\left(2n+\sqrt{n^2-1}\right)\left(\sqrt{n+1}-\sqrt{n-1}\right)}{2}\)

\(=\dfrac{2n\sqrt{n+1}-2n\sqrt{n-1}+\left(n+1\right)\sqrt{n-1}-\left(n-1\right)\sqrt{n+1}}{2}\)

\(=\dfrac{\left(n+1\right)\sqrt{n+1}-\left(n-1\right)\sqrt{n-1}}{2}\) cộng lại ...................

Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)

=10

Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)

\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)

\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)

\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)