Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
ĐK:(tự tìm)
Đầu tiên ta chứng minh bđt sau:\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)(đúng)
Áp dụng vào bài toán\(\Rightarrow VT\ge\sqrt{3-4x+4x+1}=2\)
Xét \(VP=-16x^2-8x+1=-16x^2-8x-1+2=-\left(4x+1\right)^2+2\le2\)
\(\Rightarrow VT\ge VP\)
"="\(\Leftrightarrow\left(3-4x\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\left(loai\right)\\x=-\frac{1}{4}\left(tm\right)\end{matrix}\right.\)
Vậy x=-1/4
Ta có:
\(16x^4+4x^2+1=16x^4+8x^2+1-4x^2=\left(4x^2+1\right)^2-4x^2=\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)\)
\(4x^2-6x+1=2\left(4x^2-2x+1\right)-\left(4x^2+2x+1\right)\)
Chia hai vế phương trình ban đầu cho \(4x^2+2x+1\) ta được
\(2\dfrac{4x^2-2x+1}{4x^2+2x+1}-1=\dfrac{-\sqrt{3}}{3}\sqrt{\dfrac{4x^2-2x+1}{4x^2+2x+1}}\)
Đặt \(y=\sqrt{\dfrac{4x^2-2x+1}{4x^2+2x+1}}>0\), phương trình trên tương đương với
\(2y^2-1=\dfrac{-\sqrt{3}}{3}y\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{\sqrt{3}}{3}\left(tm\right)\\y=\dfrac{-\sqrt{3}}{2}\left(l\right)\end{matrix}\right.\)
Với \(y=\dfrac{\sqrt{3}}{3}\) ta có:
\(\dfrac{4x^2-2x+1}{4x^2+2x+1}=\dfrac{1}{3}\Leftrightarrow3\left(4x^2-2x+1\right)-\left(4x^2+2x+1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\).
\(8x^2+11x+1=\left(x+1\right)\sqrt{4x^2+6x+5}\)
\(\left(8x^2+11x+1\right)^2=\left(x+1\right)^2\left(4x^2+6x+5\right)\)
\(\left(8x^2+11x+1\right)^2=4x^4+6x^3+5x^2+8x^3+12x^2+10x+4x^2+6x+5\)
\(64x^4+176x^3+137x^2+22x+1=4x^4+14x^3+21x^2+16x+5\)
\(64x^4+176x^3+137x^2+22x+1-4x^4-14x^3-21x^2-16x-5=0\)
Tự giải quyết nốt,đc chứ.
\(ĐK:x\inℝ\)
Phương trình đã cho tương đương với
\(\left(3x+2\right)^2-\left(x^2+x+3\right)\)\(=\left(x+1\right)\sqrt{\left(x+1\right)\left(3x+2\right)+\left(x^2+x+3\right)}\)
Đặt \(3x+2=u;\sqrt{4x^2+6x+5}=v\left(v\ge0\right)\)ta thu được hệ phương trình
\(\hept{\begin{cases}u^2=x^2+x+3+\left(x+1\right)v\\v^2=\left(x+1\right)u+x^2+x+3\end{cases}}\)\(\Rightarrow u^2-v^2=\left(x+1\right)\left(v-u\right)\)
\(\Leftrightarrow\left(u-v\right)\left(u+v+x+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x+1=0\end{cases}}\)
Xét hai trường hợp:
TH1:\(u=v\Leftrightarrow3x+2=\sqrt{4x^2+6x+5}\) \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-2}{3}\\9x^2+12x+4=4x^2+6x+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-2}{3}\left(1\right)\\5x^2+6x-1=0\left(2\right)\end{cases}}\)
Giải phương trình (2), ta thu được hai nghiệm \(\frac{-3+\sqrt{14}}{5}\)và \(\frac{-3-\sqrt{14}}{5}\)kết hợp điều kiện (1) suy ra TH1 thu được 1 nghiệm \(x=\frac{\sqrt{14}-3}{5}\)
TH2: \(u+v+x+1=0\Leftrightarrow\sqrt{4x^2+6x+5}=-4x-3\)
\(\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{4}\\4x^2+6x+5=16x^2+24x+9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{4}\left(3\right)\\12x^2+18x+4=0\left(4\right)\end{cases}}\)
Giải phương trình (4) ta thu được hai nghiệm \(\frac{-9-\sqrt{33}}{12}\)và \(\frac{-9+\sqrt{33}}{12}\)kết hợp điều kiện (3) suy ra TH2 thu được 1 nghiệm là \(x=-\frac{9+\sqrt{33}}{12}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{\sqrt{14}-3}{5};-\frac{9+\sqrt{33}}{12}\right\}\)
về trái là : Căn ( 3-4x) + căn ( 4x+1)