Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a^2\ge4b\right)\)
Hệ phương trình trở thành \(\left\{{}\begin{matrix}a^3-3ab+b^3=17\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b+1\right)=17\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=6\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2;b=3\left(l\right)\\a=3;b=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)
2.
\(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-6=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3=8\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\)
\(\Leftrightarrow x=y=1\)
\(\left\{{}\begin{matrix}x^2y+2=y^2\\xy^2+2=x^2\end{matrix}\right.\)
☘ Trừ vế theo vế
\(\Rightarrow x^2y-xy^2=y^2-x^2\)
\(\Leftrightarrow xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+xy\right)=0\)
☘ Trường hợp 1: \(x=y\)
☘ Trường hợp 2: \(x+y+xy=0\)
\(\Leftrightarrow y\left(1+x\right)=-x\)
\(\Leftrightarrow y=-\dfrac{x}{1+x}\) thay vào phương trình thứ 2
\(\Rightarrow x\left(-\dfrac{x}{1+x}\right)^2+2=x^2\)
\(\Leftrightarrow x^3+2\left(1+x\right)^2-x^2\left(1+x\right)^2=0\)
\(\Leftrightarrow x^4+x^3-x^2-4x-2=0\)
\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2-x-1\right)=0\)
⚠ Tự giải tiếp nha. Mà chưa học hệ phương trình đối xưng gì đó nên không chắc đâu.
Lấy pt (1)-pt(2) ta có:
\(x^2y-xy^2=y^2-x^2\)
<=>\(xy(x-y)+(x-y)(x+y)=0\)
<=>\((x-y)(x+y+xy)=0\)
=>x=y hoặc x+y+xy=0=>y(x+1)=-x=>y=\(\frac{-x}{x+1} \)
Với x=y
=>\(x^3-x^2+2=0\)
=>x=-1
=>y=-1
Với y=\(\frac{-x}{x+1} \)
=>\(\frac{-x^3}{x+1} +2-\frac{x^2}{(x+1)^2}=0 \)
tự giải nốt nha
\(\left\{{}\begin{matrix}x^3+y^2=2y\left(1\right)\\y^3+x^2=2x\left(2\right)\end{matrix}\right.\)
Lấy (1)-(2), ta được:
\(x^3-y^3-\left(x^2-y^2\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-x-y+2\right)=0\)
*Với \(x=y\). Từ (1) ta có: \(x^3+x^2-2x=0\)
Giải ra ta được: \(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=1\\y=-2\end{matrix}\right.\)
*Với \(x^2+xy+y^2=x+y-2\). Đặt \(S=x+y;P=xy\).
Khi đó ta có: \(S^2-S+2=P\left(1'\right)\)
Lấy (1)+(2) ta được:
\(x^3+y^3+x^2+y^2=2\left(x+y\right)\)
\(\Rightarrow S^3-3SP+S^2-2P=2S\left(2'\right)\)
Thay (1') vào (2'), ta được:
\(S^3-3S\left(S^2-S+2\right)+S^2-2\left(S^2-S+2\right)=2S\)
\(\Leftrightarrow-2S^3+2S^2-6S-4=0\)
\(\Leftrightarrow S^3-S^2+3S+2=0\)
Đến đây mình bấm máy và nó ra nghiệm xấu ;)) bạn thử kiểm tra lại cách rút gọn của mình xem có gì sai sót nhé. Từ đây ta tìm được S, rồi tìm được P và sử dụng định lí Viète đảo để tính x,y nhé.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=u\\y^2+y=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;2\right);\left(2;6\right)\)
TH1: \(\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\) \(\Rightarrow...\)
TH2: ... tương tự